

\mathbf{O}

APPENDIX 5-15

SUBSTATION DRAINAGE REPORT AND DRAWINGS

SUBSTATION DRAINAGE REPORT

05/12/2024 Doc No. IRE1-HMV-OSS-EL-RP-4002 Rev 04

Project No.	Doc. No.	Rev.	Date	Prepared By	Checked By	Approved By	Status
IRE1	IRE1-HMV-ONS-EL-RP-4002	01	06/12/2023	SH	GF	IB	Planning
IRE1	IRE1-HMV-ONS-EL-RP-4002	02	28/06/2024	SM	SH	IB	Planning
IRE1	IRE1-HMV-ONS-EL-RP-4002	03	29/11/2024	SM	SH	IB	Planning
IRE1	IRE1-HMV-ONS-EL-RP-4002	04	05/12/2024	SM	SH	IB	Planning

MWP, Engineering and Environmental Consultants

Address: Park House, Bessboro Road, Blackrock, Cork, T12 X251 www.mwp.ie

FUINNEAMH SCEIRDE TEO

FUINNEAMH SCEIRDE TEO

Contents

1.1	Site Location	1
1.2	Proposed Development	2
Site C	Characteristics	2
2.1	Site Topography	2
2.2	Site Hydrology	2
2.3		
Propo	osed Drainage Strategy	3
	Foul Drainage	3
3.2	Storm Drainage	4
3.2.1	Proposed Storm Drainage Strategy	4
3.2		
3.2	2.1.2 Water Quality	5
3.2.2		
3.2.3	Discharge	6
3.2.4	Storm Drainage Calculations	6
3.2	2.4.1 Determination of Peak Flow	6
3.3	Water Supply	7
	1.1 1.2 Site C 2.1 2.2 2.3 Prope 3.1 3.2 3.2.1 3.2 3.2.2 3.2.2 3.2.3 3.2.4	1.2 Proposed Development

Figures

Figure 1 - Site Location	1
Figure 2 - Proposed Substation Development	. 2
Figure 3 - Extract from BS 8301 showing capacity of 150mm diameter pipe at 2/3 depth	. 3

Appendices

Appendix A –	Drainage	drawings
--------------	----------	----------

Appendix B – Petrol Interceptor Data Sheet

Appendix C – Stormwater Calculations

Appendix D – Foul Calculations

Appendix E – Rainfall Return Period Table

1. Introduction

Malachy Walsh and Partners (MWP) were commissioned by H&MV Engineering Ltd to act as Civil and Structural Engineering design consultants for the proposed substation Complex at Ballymacrinan, County Clare. This report outlines the engineering design philosophy employed for the proposed drainage systems serving the development and also outlines the situation concerning a clean water supply.

1.1 Site Location

The proposed 220kV GIS substation is located within the townland of Ballymacrinan, County Clare. It is situated less than 2km to the northwest of Moneypoint Power Station located at Kilrush county Clare on the Shannon Estuary. The ground level in the site falls from southwest to northwest, towards the N68 roadway. The high point in the site is 23.08m AOD and the low point is 16.85m AOD. The proposed development will consist of a substation compound and associated access roads and site services.

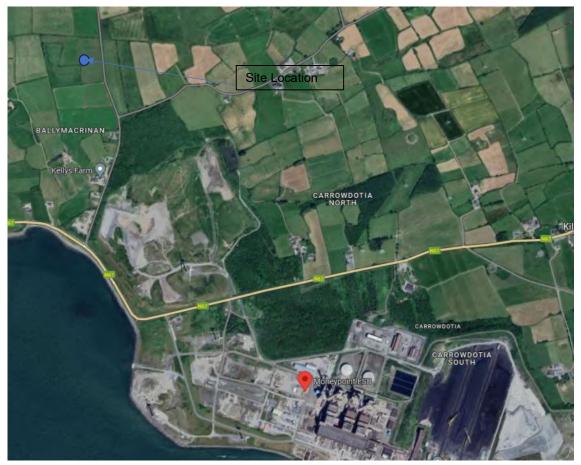


Figure 1 - Site Location

FUINNEAMH SCEIRDE TEO

1.2 Proposed Development

The proposed substation development primarily comprises the provision of a 220kV ESB GIS Building, an Eirgrid 220kV GIS substation compound along with outdoor compensation compounds, and ancillary works which is described as follows:

The proposed ESB 220kV Substation Compound is to be located on south side of site. The site of the proposed development has an area of c. 0.36 hectares. The proposed ESB 220kV Substation Compound includes the provision of a two storey GIS Substation building (with a gross floor area of 1,813sqm). This two storey GIS has been designed to meet EirGrid's standard specifications. The GIS

Figure 2 - Proposed Substation Development

substation would predominately comprise powder coated profiled metal cladding panels and all service/escape doors would be finished to match the cladding.

The proposed Eirgrid 220kV Substation Compound along with outdoor compensation compounds is to be located on centre and north sides of site. The site of the proposed development has an area of c. 2.2 hectares. The proposed EIRGRID 220kV GIS Substation Compound includes the provision of a two-storey GIS Substation building (with a gross floor area of 1,813sqm) and one transformer with associated ancillary equipment and enclosures, one STATCOM building (with a gross floor area of 670sqm), one outdoor Harmonic Filter (with a footprint area of 1,050sqm), one Shunt Reactor (with a footprint area of 200sqm), and one outdoor incomer bay equipped with Shunt Reactor (with a footprint area of 1,100sqm). This two-storey GIS has been designed to meet EirGrid's standard specifications. The GIS substation would predominately comprise powder-coated profiled metal cladding panels and all service/escape doors would be finished to match the cladding.

Additionally, a single-storey Client SCADA and MV power Building (with a gross floor area of 135.6 sqm), lightning masts, car parking, associated underground services and roads within a 2.6m high fenced compound and all associated construction and ancillary works. The client SCADA building would block work with a screed finish.

2. Site Characteristics

2.1 Site Topography

The site of the proposed substation development slopes from south to north at an average approximate gradient of (1 in 40). The high point in the site is 23.08m AOD and the low point is 16.85m AOD. The proposed development will consist of a substation compound and associated access roads and site services.

2.2 Site Hydrology

The most significant hydrological feature in the vicinity of the proposed substation development is the Shannon River Estuary, located approximately 706m beyond the southern boundary of the site.

2.3 Existing Municipal Drainage System

There is no public sewer system in the vicinity of the site to make a connection to the public system viable. The site is currently in green field condition and functioning as agricultural land.

3. Proposed Drainage Strategy

3.1 Foul Drainage

The foul drainage design includes 3 No. 5m³ wastewater holding tank to be installed. Emptying times of the holding tank may vary depending on usage on the site but should be emptied every 6 months at a minimum.

Irish Water code of practice for Wastewater specifies a design daily flow rate of 50 litres/person for an industrial setting (office/no canteen). Assuming the tank is emptied at a minimum of once every 6 months or once the storage volume reaches $4m^3$ (80% capacity), this equates to a total of 40 days of use in a 6-month period assuming two operatives per visit:

 $4m^3$ Tank volume / (0.05m³ design load per person per day x 2 operatives) = 40 days

This volume is more than adequate to cater for the expected maintenance visits and usage of the individual buildings on the site, including a suitable buffer for any unforeseen visits.

An alarm will be fitted to the tank to advise the maintenance management that the system is close to capacity such as 80%. This is so that the system can be emptied to prevent the risk of it overflowing. A vent pipe is proposed to serve the tanks to reduce the risk of odour nuisance on the site due to the tanks.

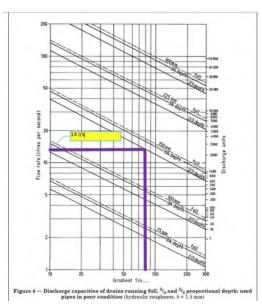


Figure 3 - Extract from BS 8301 showing capacity of 150mm diameter pipe at 2/3 depth

3.2 Storm Drainage

3.2.1 Proposed Storm Drainage Strategy

The storm drainage proposals incorporate the following elements;

- sewers not surcharging in the 30-year event.
- Sewers are not flooding in the 100-year event with 20% climate change.
- A 20% additional climate change allowance is also included in the design of the surface water system and the attenuation tank. Refer to Appendix C for calculations for the sizing of the surface water drainage system.

Refer to Appendix A for storm water layout drawings.

3.2.1.1 Collection & Conveyance

Stormwater runoff will be collected from the hardstanding areas as follows.

Buildings

Buildings will be drained via rainwater downpipes to an underground gravity system before attenuation and discharge.

Total Contributing drainage area=3210m²

Bund areas

The bunds will be constructed with benching to fall to a sump where it will be connected to the underground gravity system and will pass through a Full retention oil separator before attenuation and discharge.

Total Contributing drainage area=224m²

Asphalt Roadways

The Proposed access roads and car parking areas that are present throughout the site will be constructed with the use of permeable asphalt. High voids within porous asphalt pavements cause water to filter through the pavement structure into an underlying drainage base and then into the water table. An area of impermeable asphalt will be located at the site entrance due to the perceived increased durability required from turning movements off the public road. A filter drain will be located inside this to capture the runoff from this area and will be sized to act as a localised soakaway independent of the system within the site. **Total Contributing drainage area=8,459m²**

Compound Stone

The remaining compound and any runoff from the access road are to drain via natural infiltration through the compound stone and the 6F2 material. Previous installations of this drainage mechanism have shown this approach is successful and the infiltration rate through the 6f2 material is adequate.

Spoil Area

The proposed spoil area for the development to the north of the site will feature proposed landscaping measures which will assist in providing a permeable surface for natural storm water filtration and osmosis of the planting which will be provided.

3.2.1.2 Water Quality

All runoff collected within the traffo bund will pass through a designated full retention petrol/oil interceptor chosen to accommodate the required peak flow. Current design shows this as a peak flow of 10.3l/s requiring an NSFA020 unit to accommodate design requirements

See Appendix B for details on Kingspan Klargester fuel/oil separator to be used on this project. An operation and maintenance system for this oil interceptor will be provided by the Oil interceptor manufacturer and included in the Safety File for this project.

Sumps will be utilised on all systems to remove silt from the stormwater runoff.

3.2.2 Attenuation

Stormwater runoff will be attenuated within the site using an attenuation tank system. Inlet and outlet manholes will be constructed with 300mm sumps with the outlet manhole fitted with a hydro brake flow restrictor set to greenfield runoff rates for the site. The attenuation tanks are sized as follows;

System 1 – Draining From ESB Substation Compound

Contributing impermeable area – 860m²

Tank Construction - Stormtech System OSEA

Dimensions – 2 x 15 x 0.8m Deep

Volume(Effective) – 14.4m³

Outflow Restriction Type - Hydrobrake

Outflow Rate – 3l/s

System 2 – Draining From Eirgrid Compound

Contributing impermeable area – 2420m²

Tank Construction - Stormtech System OSEA

Dimensions – 3.5 x 20 x 1.2m Deep

Volume(Effective) – 50.4m³

Outflow Restriction Type - Hydrobrake

Outflow Rate – 6l/s

System 3 – Draining From Scada building

Contributing impermeable area $-150m^2$

Tank Construction - Stormtech System OSEA

Dimensions – 2 x 10 x 0.6m Deep

Volume(Effective) – 7.2m³

Outflow Restriction Type - Hydrobrake

Outflow Rate – 3l/s

3.2.3 Discharge

Discharge from the site will be into an existing stream to the north of the site. As shown above the peak discharge rate for the site will be 12l/s with hydrobrakes being used as flow control devices.

Rip-Rap aprons will be located at the storm water outlets which will reduce the potential for erosion at the outfall points.

Soakaway tests will also be undertaken at detailed design stage to assess the viability of forming a dual infiltration/attenuation tank to further reduce discharge into the existing stream.

3.2.4 Storm Drainage Calculations

3.2.4.1 Determination of Peak Flow

Runoff rates from a developed site were estimated using the Modified Rational Approach method which is advised with TII (DN-DNG-03066). The equation is as follows:

$Q = 1.3 \ x \ 2.78 \ x \ Cv \ x \ i \ x \ Ai$

Q =The design event peak runoff rate(I/s)

Ai = The impervious area. Assumed to be permeable throughout the site.

i =The intensity which is based on the FSR method. The M5-60 and r values were taken from the Met Eireann Depth Duration Frequency Tables for the site.

Cv =The non-dimensional runoff coefficient which is dependent on the catchment characteristics. This can be taken as the mean value 0.75 for the summer profile and 0.84 for the winter profile. TII allow for it to be calculated based on the following formulas.

The CIRIA SUDS Manual (2015) advises to calculate the PR (Percentage Runoff) using the UKWIR equation. This equation is included hereunder and used the default values advised by the SUDS manual except for the following.

- SPR was assumed to be 0.40 as the soil type 4 is most representative of the site based on the underlying clays.
- PIMP was set as 100 %.
- The PR value and cv values were estimated to be 0.75 and 0.84 respectively based on this approach.
- A literary review was conducted to verify if the calculated answer was accurate based on previous studies and are listed in the table below:

Value	Surface Use/Type	Source
0.44	Gravel	Tatamy Borough, Pennsylvania,
0.95	Parking/Other Impervious	Ordinance No. 283-2020
0.70-0.95	Asphalt and Concrete	
0.7-0.85	Brick	Innovyze
0.5-0.8	Loght Industrial	
0.5	Unpaved Parking	Donahue, 2013 Determining Appropriate Nutrient and Sediment Loading Coefficients for Modeling Effects of Changes in Landuse and Landcover in Alberta Watersheds
0.35-0.4	Gravel Road	Li et al, 2014, A New Method for Urban Storm Flood Inundation Simulation with Fine CD-TIN Surface
0.8-1	Paved Areas	CIRA SUDS Manual 2015

Table 1 - Cv Value Recommendations

Innovyze states that this value should be multiplied by a frequency adjustment factor of 1.25 for a 1-year event. **alculations**

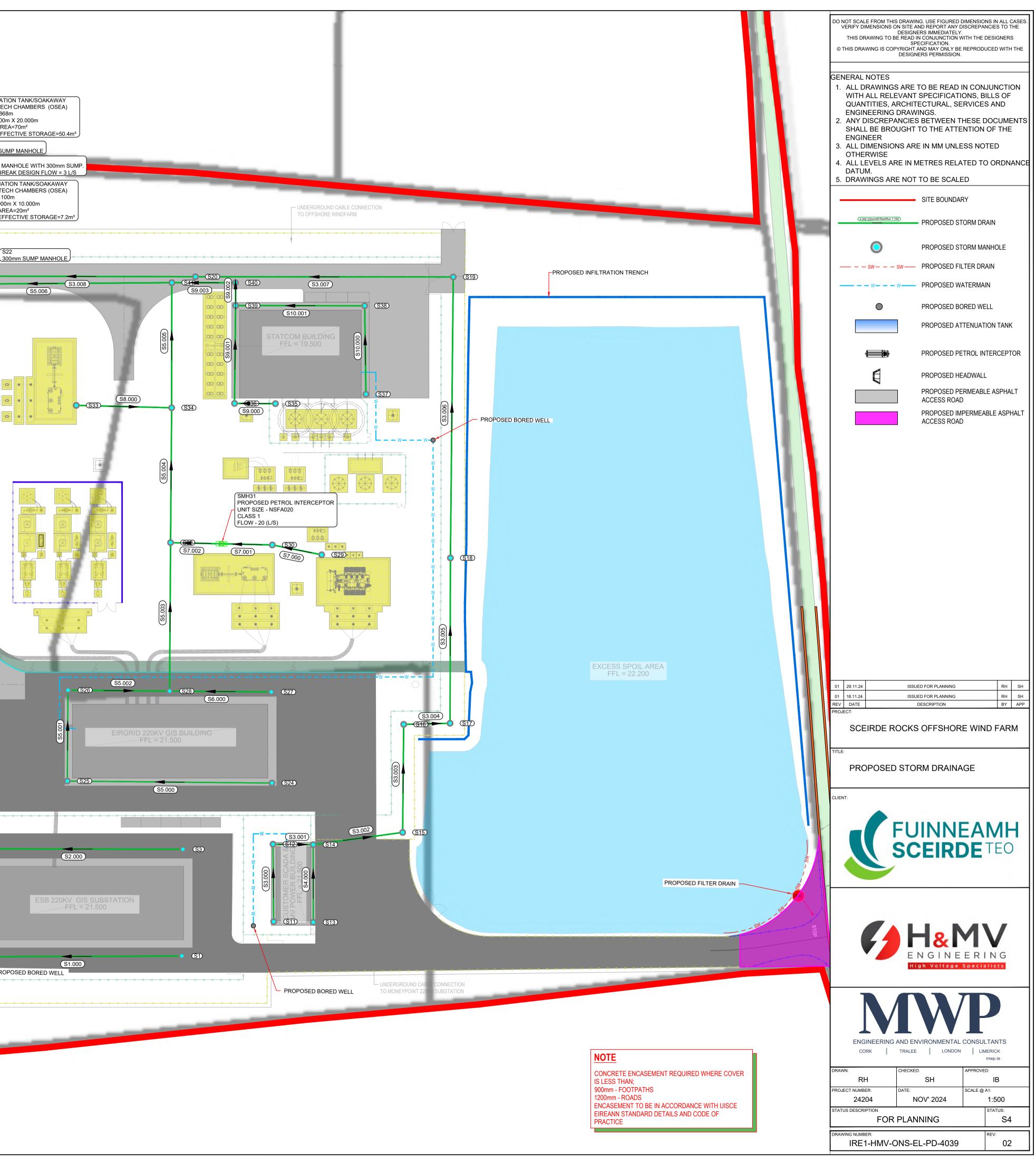
The storm sewer was designed using Microdrainage software. The stormwater design report is included in Appendix C. Below is a summary of the parameters used.

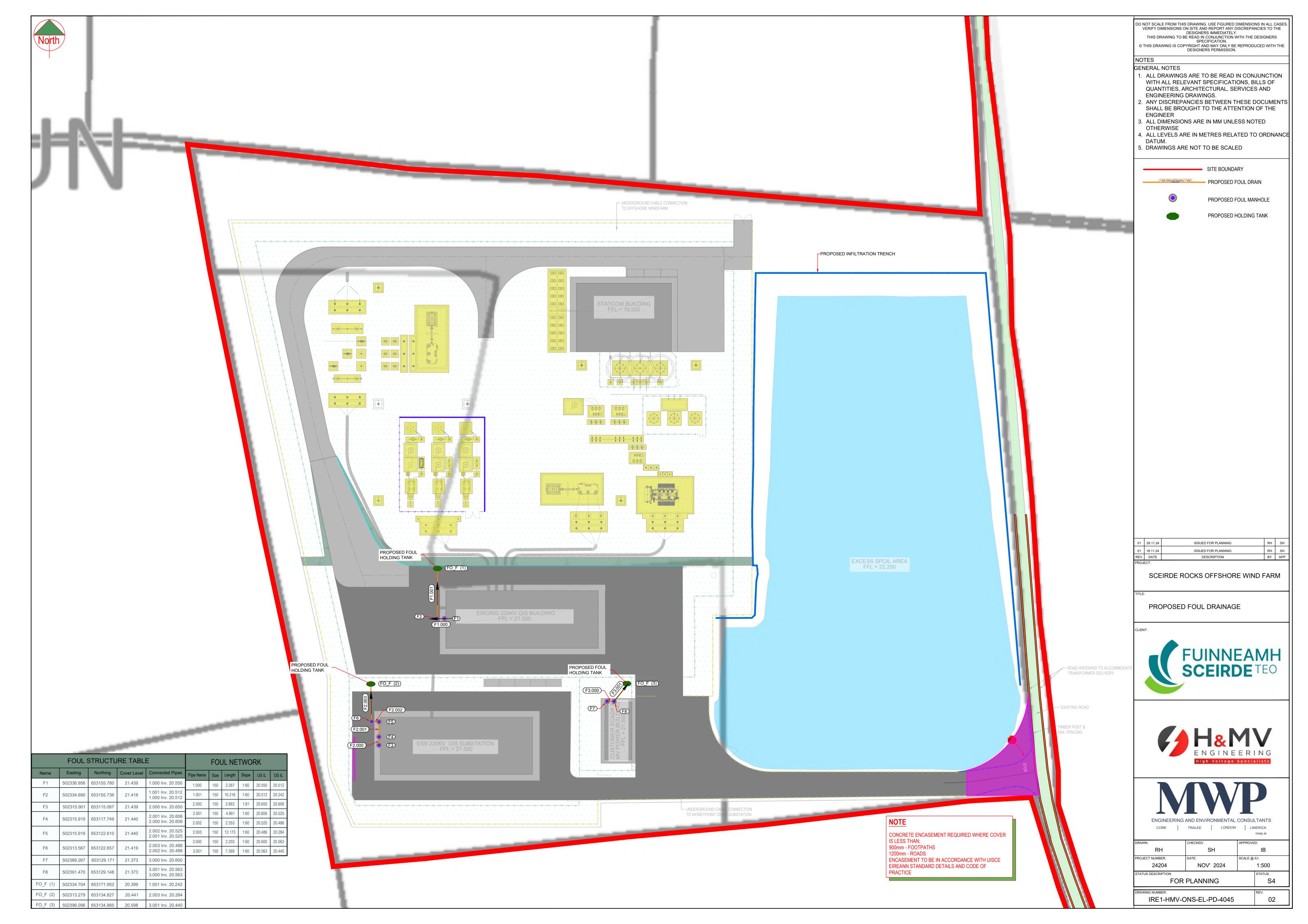
Design Characteristic	Value	Source
Site Area(ha)	4.98	Site Boundary
Ai(ha)	.343	Impermeable area in Microdrainage calculations
SAAR(mm)	1204	UKSUDS Greenfield Runoff Calculator
Soil Factor	4	FSR Soil Mapping
M5-60	14	Met Eireann Rainfall Data
r	.249	Met Eireann Rainfall Data(M5-60/M5-2DAY)
PIMP	100	
Climate Change Factor	20	County Development Plan
Cv(Summer)	.75	Modified Rational Method
Cv(Winter)	.84	Modified Rational Method

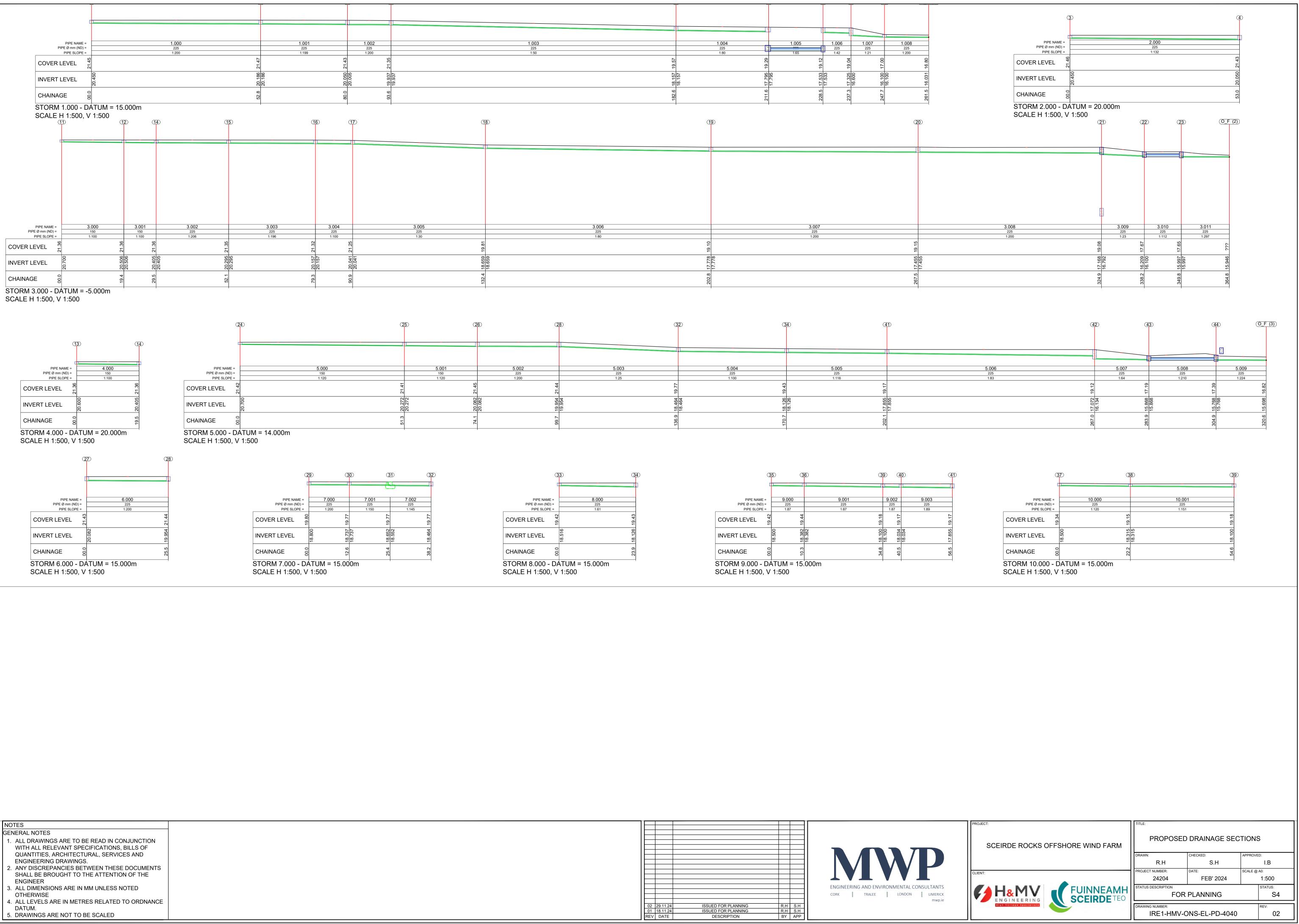
Table 2 - Calculation Parameters

3.3 Water Supply

There is no existing water supply serving the site. It is proposed that three no. bored wells will supply water to the compound as detailed in drawing number IRE1-HMV-ONS-EL-LA-4039. Design water demand for the buildings was estimated at 50 l/p based on Uisce Eireann's Code of practice recommendations. Two operatives are assumed


per building which equates to a 300 l/d water demand for the development. Water supply will be designated as non-potable and will be for sanitary use only. Signage will be placed at water points to indicate this.




Appendix A

Layout Drawing

North		=	-		=	þ				-	SO_ ALL HEAD SO_F (1) EADWALL			OUTF	SO_ ALL HEAD	_F (2) WALL		ATTEN STORM IL IN=15 WxL=3. TOTAL TOTAL S43 300mm
	•		J									S1.008	S5.009	_				S23 OUTLE HYDRC
	-				OUTLET					.	ভ		is)			S3.011		STORN IL IN=1 WxL=2
									$\frac{W = 6 L/S}{S}$	8]		51.001	-	/				TOTAL
									W = 3 L/S				(S)		-(S5.007)		S3.009	
STORM ST	FRUCTUR	E TABLE				STO	RM N	ETWO	ORK			S1.006			(33.007)		(<u>S21</u>
tructure Name	Easting	Northing	Cover Level	Connected Pipes	Pipe Name		Length	Slope	US IL	DS IL							542)	
S1 S2	502364.864 502312.024	653101.594 653101.370	21.451 21.469	1.000 Inv. 20.450 1.001 Inv. 20.186 1.000 Inv. 20.186	1.000 1.001	225 225	52.841 27.117	1:200 1:199	20.450 20.186	20.186 20.050				ST IL	ORMTECI	H CHAMBE m	SOAKAWAY RS (OSEA)	*
S3	502365.154	653128.356	21.456	2.000 Inv. 20.450	2.000 1.002	225 225	52.993 13.634	1:132 1:200	20.450 20.005	20.050 19.937		L .		ТС	TAL ARE		n ORAGE=14.4m³	
S4	502312.161	653128.487	21.434	1.002 Inv. 20.005 1.001 Inv. 20.050 2.000 Inv. 20.050	1.003	225	89.018	1:50	19.937	18.157				S7 300mr	n SUMP M	ANHOLE		
S5	502303.161	653138.728	21.350	1.003 Inv. 19.937 1.002 Inv. 19.937	1.004 1.005	225 225	28.944 16.987	1:80 1:65	18.157 17.795	17.795 17.533							• 🗷 • 🖻 •	
S6	502284.110	653225.683	19.566	1.004 Inv. 18.157 1.003 Inv. 18.157	1.006	225 225	8.735 10.452	1:42 1:21	17.533 16.600	17.325 16.100			(FO	I A				
S7	502277.866	653253.945	19.285	1.005 Inv. 17.795 1.004 Inv. 17.795	1.008	225	13.811	1:200	16.100	16.031			(1004)		\ \			
S8	502274.196	653270.531	19.120	1.006 Inv. 17.533 1.005 Inv. 17.533	3.000 3.001	150 150	19.407 10.082	1:100 1:100	20.700 20.506	20.506 20.405							• 8 • 8	_
S9	502272.764	653279.148	19.038	1.007 Inv. 16.600 1.006 Inv. 17.325	4.000 3.002	150 225	19.479 22.655	1:100 1:206	20.600 20.405	20.405 20.295					56		•	
S10	502271.090 502387.901	653289.465 653110.219	17.000	1.008 Inv. 16.100 1.007 Inv. 16.100 3.000 Inv. 20.700	3.003	225	27.110	1:196	20.295	20.157	1							*
S12	502387.740	653129.625	21.361	3.001 Inv. 20.506 3.000 Inv. 20.506	3.004 3.005	225 225	11.635 41.465	1:100 1:30	20.157 20.041	20.041 18.659								
S13	502397.835	653110.045	21.364	4.000 Inv. 20.600	3.006 3.007	225 225	70.485 64.690	1:80 1:200	18.659 17.778	17.778 17.455	-				0			
S14	502397.821	653129.524	21.364	3.002 Inv. 20.405 3.001 Inv. 20.405 4.000 Inv. 20.405	3.008	225	57.325	1:200	17.455	17.168								
S15	502420.268	653132.593	21.350	3.003 Inv. 20.295 3.002 Inv. 20.295	3.009 3.010	225 225	13.368 11.545	1:23 1:112	16.792 16.100	16.209 15.997					0			
S16	502420.525	653159.702	21.321	3.004 Inv. 20.157 3.003 Inv. 20.157	3.011 5.000	225 150	15.034 51.336	1:297 1:120	15.997 20.700	15.946 20.272	-							
S17	502432.157	653159.970	21.248	3.005 Inv. 20.041 3.004 Inv. 20.041	5.001 5.002	150 225	22.809 25.505	1:120 1:200	20.272 20.082	20.082 19.954								
S18	502432.254	653201.435	19.810	3.006 Inv. 18.659 3.005 Inv. 18.659 3.007 Inv. 17.778	6.000	225	25.521	1:200	20.082	19.954				ι.				
S19 S20	502432.964	653271.916 653271.979	19.101	3.006 Inv. 17.778 3.008 Inv. 17.455	5.003 7.000	225 225	37.242 12.622	1:25 1:200	19.954 18.800	18.464 18.737	-				S1.003			
S20	502310.949	653272.133	0.000	3.007 Inv. 17.455 3.009 Inv. 16.792	7.001 7.002	225 225	12.768 12.768	1:150 1:145	18.737 18.552	18.652 18.464								
S22	502310.612	653285.497	17.665	3.008 Inv. 17.168 3.010 Inv. 16.100 3.009 Inv. 16.209	5.004	225	33.832	1:100	18.464	18.126					Ŷ		L L	
S23	502299.067	653285.416	17.648	3.011 Inv. 15.997 3.010 Inv. 15.997	8.000 5.005	225 225	23.936 31.374	1:61 1:116	18.516 18.126	18.126 17.855						00		
S24	502387.469	653144.970	21.421	5.000 Inv. 20.700	9.000 9.001	225 225	10.262 24.536	1:87 1:87	18.500 18.382	18.382 18.100	-							
S25	502336.135	653145.469	21.414	5.001 Inv. 20.272 5.000 Inv. 20.272 5.002 Inv. 20.082	10.000	225	22.186	1:120	18.500	18.315								
S26 S27	502336.292 502387.317	653168.277 653167.822	21.446	5.002 INV. 20.082 5.001 Inv. 20.082 6.000 Inv. 20.082	9.002	225 225	32.370 5.731	1:151 1:87	18.315 18.100	18.100 18.034	1				k.			
S28	502361.796	653168.039	21.439	5.003 Inv. 19.954 5.002 Inv. 19.954	9.003 5.006	225 225	15.997 64.861	1:89 1:83	18.034 17.855	17.855 17.072						0		
S29	502399.949	653202.232	19.798	6.000 Inv. 19.954 7.000 Inv. 18.800	5.007 5.008	225 225	16.955 21.000	1:64 1:210	16.134 15.868	15.868 15.768							Q (S5)	
S30	502387.571	653204.702	19.773	7.001 Inv. 18.737 7.000 Inv. 18.737	5.009	225	15.666	1:224	15.768	15.698]						(3). [1]	-0-0-0-0
S31	502374.807	653204.991	19.771	7.002 Inv. 18.552 7.001 Inv. 18.652												9. 9	153	
S32	502362.042	653205.280	19.768	5.004 Inv. 18.464 5.003 Inv. 18.464 7.002 Inv. 18.464										-		ļ	0	
S33	502338.386	653239.708	19.423	8.000 Inv. 18.516 5.005 Inv. 18.126	1						-							
S34	502362.314	653239.111	19.429	5.005 Inv. 18.126 5.004 Inv. 18.126 8.000 Inv. 18.126												·	- (S1.001	W
S35 S36	502388.354 502378.092	653240.145 653240.204	19.419 19.436	9.000 Inv. 18.500 9.001 Inv. 18.382	-													
S36 S37	502378.092 502411.058		19.436	9.000 Inv. 18.382 10.000 Inv. 18.500	MAN	HOLE COVER	R AND FRAME	SHALL COMP	PLY TO IS EN									
S38	502410.734	653264.694	19.149	10.001 Inv. 18.315 10.000 Inv. 18.315	124 A HAVE	ND BS 7903 MIN. FRAM 600mm or 60	(ALL CLASS D E DEPTH 100-1	400 COVERS 150mm) MIN. (SET IN CEME	SHALL OPE									• - S2
S39	502378.365	653264.738	19.183	9.002 Inv. 18.100 9.001 Inv. 18.100 10.001 Inv. 18.100			50N/mm2 FINISHED GR		\backslash		CC	DNCRETE HAUNCH S ALL MANHOLE COV	SURROUND /ERS					-00C
S40	502378.342	653270.469	19.166	9.003 Inv. 18.034 9.002 Inv. 18.034	ENGIN TO ISE RISER MAY E	EERING BRICK N 998 PROPRI PIECES BEDD	CLASS B SOLID (S SET IN M30 MO IETARY PRECAST ED ON M30 MORT HIEVE CORRECT No. Max.)	AR		MIN. 600		552	ERDUCT					- oo -o
S41	502362.345	653270.485	19.170	5.006 Inv. 17.855 5.005 Inv. 17.855	0+00	L V EL (2	,mah.j				1.4.5 1.	125MM Ø POW 1200MM MH RIN CONCRETE GRA C30/37 IN ROOF WALLS AND BAS	G FEED TO BU	IILDINGS			L.	
S42	502297.485	653270.048	19.123	9.003 Inv. 17.855 5.007 Inv. 16.134 5.006 Inv. 17.072	-				a a a a a a a a a a a a a a a a a a a									
S43	502296.920	653286.994	17.186	5.006 Inv. 17.072 5.008 Inv. 15.868 5.007 Inv. 15.868	-					4 4 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4	<mark></mark>						1	
S44	502275.924	653287.411	17.386	5.009 Inv. 15.768 5.008 Inv. 15.768	1												1	
SO_F (1)	502270.166	653303.245	16.267	1.008 Inv. 16.031	1					لما							1	
SO_F (2)		653300.443																

					T T			
					£	5.0		
	1.003 225		1.004 225	1.005	1.006 225	225	1.008 225	
	1:50		1:80	1:65	1:42	1:21	1:200	
	19.57		0 0 0		19.12	17.00	16.80	
		18.157		17.795	17.333 17.533 17.325 16.600	16.100 16.100	16.031	
	<u></u>	18.	1	1	17. 17. 16.		16.	
	7 88 26		011 G		237.3	247.7	261.5	
1	3)	(1	9)				(20)	
þ			4 1					
	3.006			3.007				
	225			225				
~	1:80			1:200			10	
19.81		19.10					19.15	
18.659	0 20 9	17.778					17.455 17.455	
18.	Ŕ	17.	17.				17.	
132.4		202.8					267.5	
÷		50					5	

				ENGINEERING AND ENVIRONMENTAL CONS
	29.11.24 18.11.24		R.H R.H	
REV		ISSUED FOR PLANNING DESCRIPTION	BY	

Appendix B

Petrol Interceptor Data Sheet

SEPARATORS

A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND

Separators

A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND

Surface water drains normally discharge to a watercourse or indirectly into underground waters (groundwater) via a soakaway. Contamination of surface water by oil, chemicals or suspended solids can cause these discharges to have a serious impact on the receiving water.

The Environment Regulators, Environment Agency, England and Wales, SEPA, Scottish Environmental Protection Agency in Scotland and Department of Environment & Heritage in Northern Ireland, have published guidance on surface water disposal, which offers a range of means of dealing with pollution both at source and at the point of discharge from site (so called 'end of pipe' treatment). These techniques are known as 'Sustainable Drainage Systems' (SuDS).

Where run-off is draining from relatively low risk areas such as car-parks and non-operational areas, a source control approach, such as permeable surfaces or infiltration trenches, may offer a suitable means of treatment, removing the need for a separator.

Oil separators are installed on surface water drainage systems to protect receiving waters from pollution by oil, which may be present due to minor leaks from vehicles and plant, from accidental spillage.

Effluent from industrial processes and vehicle washing should normally be discharged to the foul sewer (subject to the approval of the sewerage undertaker) for further treatment at a municipal treatment works.

SEPARATOR STANDARDS AND TYPES

A British (and European) standard (EN 858-1 and 858-2) for the design and use of prefabricated oil separators has been adopted. New prefabricated separators should comply with the standard.

SEPARATOR CLASSES

The standard refers to two 'classes' of separator, based on performance under standard test conditions.

CLASS I

Designed to achieve a concentration of less than 5mg/l of oil under standard test conditions, should be used when the separator is required to remove very small oil droplets.

CLASS II

Designed to achieve a concentration of less than 100mg/l oil under standard test conditions and are suitable for dealing with discharges where a lower quality requirement applies (for example where the effluent passes to foul sewer).

Both classes can be produced as full retention separators. The oil concentration limits of 5 mg/l and 100 mg/l are only applicable under standard test conditions. It should not be expected that separators will comply with these limits when operating under field conditions.

FULL RETENTION SEPARATORS

Full retention separators treat the full flow that can be delivered by the drainage system, which is normally equivalent to the flow generated by a rainfall intensity of 65mm/hr.

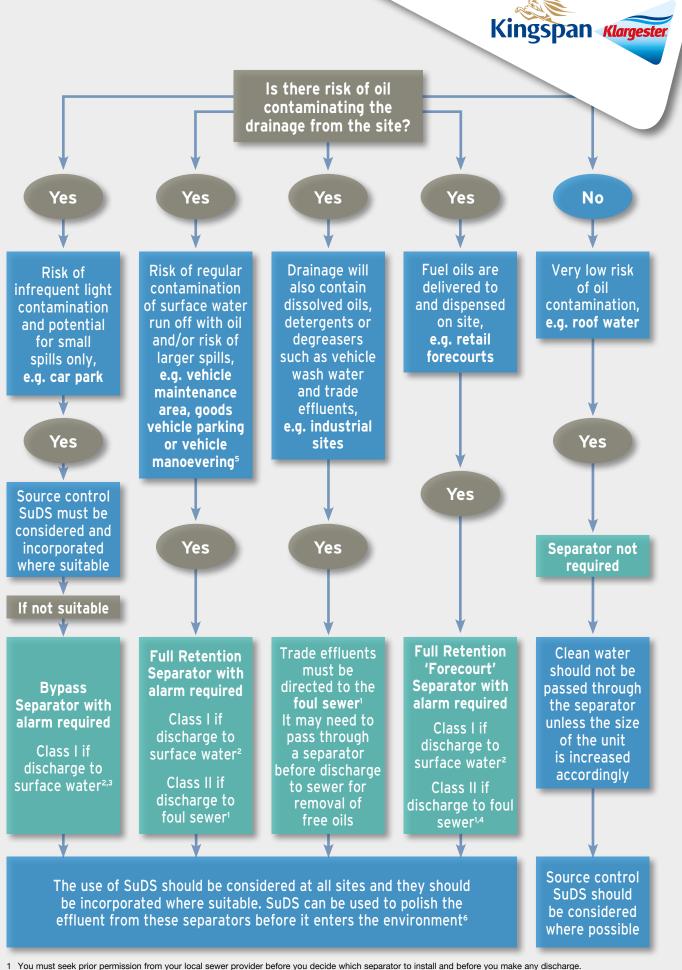
On large sites, some short term flooding may be an acceptable means of limiting the flow rate and hence the size of full retention systems. Get in touch for a FREE professional site visit and a representative will contact you within 5 working days to arrange a visit.

helpingyou@klargester.com to make the right decision or call 028 302 66799

BYPASS SEPARATORS

Bypass separators fully treat all flows generated by rainfall rates of up to 6.5mm/hr. This covers over 99% of all rainfall events. Flows above this rate are allowed to bypass the separator. These separators are used when it is considered an acceptable risk not to provide full treatment for high flows, for example where the risk of a large spillage and heavy rainfall occurring at the same time is small.

FORECOURT SEPARATORS


Forecourt separators are full retention separators specified to retain on site the maximum spillage likely to occur on a petrol filling station. They are required for both safety and environmental reasons and will treat spillages occurring during vehicle refuelling and road tanker delivery. The size of the separator is increased in order to retain the possible loss of the contents of one compartment of a road tanker, which may be up to 7,600 litres.

SELECTING THE RIGHT SEPARATOR

The chart on the following page gives guidance to aid selection of the appropriate type of fuel/oil separator for use in surface water drainage systems which discharge into rivers and soakaways.

For further detailed information, please consult the Environment Agency Pollution Prevention Guideline 03 (PPG 3) 'Use and design of oil separators in surface water drainage systems' available from their website.

Kingspan Klargester has a specialist team who provide technical assistance in selecting the appropriate separator for your application.

² You must seek prior permission from the relevant environmental body before you decide which separator to install.

In this case, if it is considered that there is a low risk of pollution a source control SuDS scheme may be appropriate. 3

⁴ In certain circumstances, the sewer provider may require a Class 1 separator for discharges to sewer to prevent explosive atmospheres from being generated.

⁵ Drainage from higher risk areas such as vehicle maintenance yards and goods vehicle parking areas should be connected to foul sewer in preference to surface water.

⁶ In certain circumstances, a separator may be one of the devices used in the SuDS scheme. Ask us for advice.

Bypass NSB RANGE

APPLICATION

Bypass separators are used when it is considered an acceptable risk not to provide full treatment, for very high flows, and are used, for example, where the risk of a large spillage and heavy rainfall occurring at the same time is small, e.g.

- Surface car parks.
- Roadways.
- Lightly contaminated commercial areas.

PERFORMANCE

Klargester were one of the first UK manufacturers to have separators tested to EN 858-1. Klargester have now added the NSB bypass range to their portfolio of certified and tested models. The NSB number denotes the maximum flow at which the separator treats liquids. The British Standards Institute (BSI) tested the required range of Kingspan Klargester Bypass separators and certified their performance in relation to their flow and process performance assessing the effluent gualities to the requirements of EN 858-1. Klargester bypass separator designs follow the parameters determined during the testing of the required range of bypass separators.

Each bypass separator design includes the necessary volume requirements for:

- Oil separation capacity. Oil storage volume. .
- Silt storage capacity. **.**

The unit is designed to treat 10% of peak flow. The calculated drainage areas served by each separator are indicated according to the formula given by PPG3 NSB = 0.0018A(m2). Flows generated by higher rainfall rates will pass through part of the separator and bypass the main separation chamber.

.

Coalescer.

Class I separators are designed to achieve a concentration of 5mg/litre of oil under standard test conditions.

FEATURES

- Light and easy to install.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- н. Vent points within necks.
- Oil alarm system available (required by EN 858-1 and PPG3).

ire less

- н. Extension access shafts for deep inverts.
- Maintenance from ground level. .
- GRP or rotomoulded construction (subject to model). н.

To specify a nominal size bypass separator, the following information is needed:-

- The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the flow is not pumped.
- The drain invert inlet depth.
- Pipework type, size and orientation. .

STANDARD DRAINAGE UNIT FLOW PEAK FLOW STORAGE UNIT UNIT DIA. ACCESS BASE TO BASE TO STANDARD MIN. INLET NOMINAL CAPACITY (litres) INLET INVERT FALL ACROSS (l/s) RATE (I/s) AREA (m²) LENGTH (mm) (mm) SHAFT OUTLET INVERT PIPEWORK OIL SIZE DIA. (mm) INVERT DIA SILT (mm) (mm) (mm) NSBP003 NSBP004 NSBP006 NSBE010 NSBE015 NSBE020 NSBE025 NSBE030 NSBE040 NSBE050 NSBF075 NSBF100 NSBE125

SIZES AND SPECIFICATIONS

Full Retention NSF RANGE

APPLICATION

Full retention separators are used in high risk spillage areas such as:

- Fuel distribution depots.
- Vehicle workshops.
- Scrap Yards

PERFORMANCE

Kingspan Klargester were the first UK manufacturer to have the required range (3-30 l/sec) certified to EN 858-1 in the UK. The NSF number denotes the flow at which the separator operates.

The British Standards Institute (BSI) have witnessed the performance tests of the required range of separators and have certified their performance, in relation to their flow and process performance to ensure that they met the effluent quality requirements of EN 858-1. Larger separator designs have been determined using the formulas extrapolated from the test range.

Each full retention separator design includes the necessary volume requirements for:

- Oil storage volume.
- Oil separation capacity. Silt storage capacity.
- Coalescer (Class I units only).
- Automatic closure device.

Klargester full retention separators treat the whole of the specified flow.

FEATURES

- Light and easy to install.
- Class I and Class II designs.
- 3-30 l/sec range independently tested and performance sampled, certified by the BSI.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.

- Oil alarm system available.
- Vent points within necks.
- Extension access shafts for deep inverts.
- Maintenance from ground level.
- GRP or rotomoulded construction (subject to model).

To specify a nominal size full retention separator, the following information is needed:-

■ The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the influent is not pumped.

Kingspan Klargester

Advanced omoulded construction on selected models

Compact and robust

equire less backfill

, lightweight and

- The required discharge standard. This will decide whether a Class I or Class II unit is required.
- The drain invert inlet depth.
- Pipework type, size and orientation.

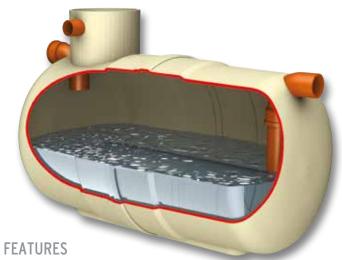
SIZES AND SPECIFICATIONS

UNIT Nominal	FLOW (I/s)	DRAINAGE AREA (m²) PPG-3 (0.018)		CAPACITY tres)	UNIT LENGTH (mm)	UNIT DIA. (mm)	BASE TO INLET INVERT	BASE TO OUTLET	MIN. INLET INLET (mm)	STANDARD PIPEWORK
SIZE			SILT	OIL			(mm)	INVERT		DIA. (mm)
NSFP003	3	170	300	30	1700	1350	1420	1345	500	160
NSFP006	6	335	600	60	1700	1350	1420	1345	500	160
NSFA010	10	555	1000	100	2610	1225	1050	1000	500	200
NSFA015	15	835	1500	150	3910	1225	1050	1000	500	200
NSFA020	20	1115	2000	200	3200	2010	1810	1760	1000	315
NSFA030	30	1670	3000	300	3915	2010	1810	1760	1000	315
NSFA040	40	2225	4000	400	4640	2010	1810	1760	1000	315
NSFA050	50	2780	5000	500	5425	2010	1810	1760	1000	315
NSFA065	65	3610	6500	650	6850	2010	1810	1760	1000	315
NSFA080	80	4445	8000	800	5744	2820	2500	2450	1000	300
NSFA100	100	5560	10000	1000	6200	2820	2500	2450	1000	400
NSFA125	125	6945	12500	1250	7365	2820	2500	2450	1000	450
NSFA150	150	8335	15000	1500	8675	2820	2550	2450	1000	525
NSFA175	175	9725	17500	1750	9975	2820	2550	2450	1000	525
NSFA200	200	11110	20000	2000	11280	2820	2550	2450	1000	600

Rotomoulded chamber construction GRP chamber construction

Washdown & Silt

APPLICATION


This unit can be used in areas such as car wash and other cleaning facilities that discharge directly into a foul drain, which feeds to a municipal treatment facility.

If emulsifiers are present the discharge must not be allowed to enter an NS Class I or Class II unit.

- Car wash.
- Tool hire depots.
- Truck cleansing.
- Construction compounds cleansing points.

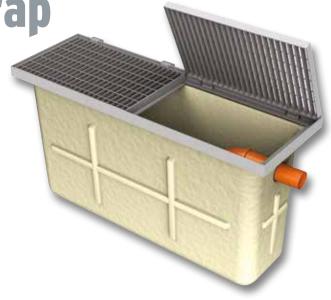
PERFORMANCE

Such wash down facilities must not be allowed to discharge directly into surface water but must be directed to a foul connection leading to a municipal treatment works as they utilise emulsifiers, soaps and detergents, which can dissolve and disperse the oils.

- Light and easy to install.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- Vent points within necks.
- Extension access shafts for deep inverts.
- Maintenance from ground level.

SIZES AND SPECIFICATIONS

REF.	TOTAL CAPACITY (litres)	MAX. REC. Silt	MAX. FLOW RATE (I/s)	LENGTH (mm)	DIAMETER (mm)	ACCESS SHAFT DIA. (mm)	BASE TO INLET INVERT (mm)	BASE TO OUTLET INVERT (mm)	STANDARD FALL ACROSS UNIT (mm)	MIN. INLET INVERT (mm)	STANDARD PIPEWORK DIA. (mm)	APPROX EMPTY (kg)
W1/010	1000	500	3	1123	1225	460	1150	1100	50	500	160	60
W1/020	2000	1000	5	2074	1225	460	1150	1100	50	500	160	120
W1/030	3000	1500	8	2952	1225	460	1150	1100	50	500	160	150
W1/040	4000	2000	11	3898	1225	460	1150	1100	50	500	160	180
W1/060	6000	3000	16	4530	1440	600	1360	1310	50	500	160	320
W1/080	8000	4000	22	3200	2020	600	2005	1955	50	500	160	585
W1/100	10000	5000	27	3915	2020	600	2005	1955	50	500	160	680
W1/120	12000	6000	33	4640	2020	600	2005	1955	50	500	160	770
W1/150	15000	7500	41	5435	2075	600	1940	1890	50	500	160	965
W1/190	19000	9500	52	6865	2075	600	1940	1890	50	500	160	1200


Car Wash Silt Trap

APPLICATION

Car Wash silt trap is designed for use before a separator in car wash applications to ensure effective silt removal.

FEATURES

- FACTA Class B covers.
- Light and easy to install.
- Maintenance from ground level.

Forecourt

APPLICATION

The forecourt separator is designed for installation in petrol filling station forecourts and similar applications. The function of the separator is to intercept hydrocarbon pollutants such as petroleum and oil and prevent their entry to the drainage system, thus protecting the environment against hydrocarbon contaminated surface water run-off and gross spillage.

PERFORMANCE

Operation ensures that the flow cannot exit the unit without first passing through the coalescer assembly.

In normal operation, the forecourt separator has sufficient capacity to provide storage for separated pollutants within the main chamber, but is also able to contain up to 7,600 litres of pollutant arising from the spillage of a fuel delivery tanker compartment on the petrol forecourt. The separator has been designed to ensure that oil cannot exit the separator in the event of a major spillage, subsequently the separator should be emptied immediately.

FEATURES

- Light and easy to install.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- Vent points within necks.
- Extension access shafts for deep inverts.
- Maintenance from ground level.

SIZES AND SPECIFICATIONS

- Class I and Class II design.
- Oil storage volume.
- Coalescer (Class I unit only).
- Automatic closure device.
- Oil alarm system available.

INSTALLATION

The unit should be installed on a suitable concrete base slab and surrounded with concrete or pea gravel backfill. See sales drawing for installation.

Kingspan Klargester

If the separator is to be installed within a trafficked area, then a suitable cover slab must be designed to ensure that loads are not transmitted to the unit.

The separator should be installed and vented in accordance with Health and Safety Guidance Note HS(G)41 for filling stations, subject to Local Authority requirements.

ENVIROCEPTOR CLASS	TOTAL CAP. (litres)	DRAINAGE AREA (m²)	MAX. FLOW RATE (1/s)	LENGTH (mm)	DIAMETER (mm)	ACCESS SHAFT DIA. (mm)	BASE TO INLET INVERT (mm)	BASE TO OUTLET INVERT (mm)	STD. FALL ACROSS UNIT (mm)	MIN. INLET INVERT (mm)	STD. PIPEWORK (mm)	EMPTY WEIGHT (kg)
1	10000	555	10	3963	1920	600	2110	2060	50	400	160	500
Ш	10000	555	10	3963	1920	600	2110	2060	50	400	160	500
1	10000	1110	20	3963	1920	600	2110	2060	50	400	200	500
II	10000	1110	20	3963	1920	600	2110	2060	50	400	200	500

Alarm Systems

British European Standard EN 858-1 and Environment Agency Pollution Prevention Guideline PPG3 requires that all separators are to be fitted with an oil level alarm system and that it should be installed and calibrated by a suitably qualified technician so that it will respond to an alarm condition when the separator requires emptying.

- Easily fitted to existing tanks.
- Excellent operational range.
- Visual and audible alarm.
- Additional telemetry option.

PROFESSIONAL INSTALLERS

Kingspan Klargester Accredited Installers Experience shows that correct installation is a prerequisite for the long-lasting and successful operation of any wastewater treatment product. This is why using an installer with the experience and expertise

to install your product is highly recommended.

Services include :

- Site survey to establish ground conditions and soil types
- Advice on system design and product selection
- Assistance on gaining environmental consents and building approvals
- Tank and drainage system installation
- Connection to discharge point and electrical networks
- Waste emptying and disposal

Discover more about the Accredited Installers and locate your local expert online.

www.kingspanenviro.com/klargester

COMMERCIAL WASTEWATER SOLUTIONS

- BIODISC® & ENVIROSAFE HIGH PERFORMANCE SEWAGE TREATMENT SYSTEMS
- PACKAGE PUMP STATIONS
- PUMPSTOR24 PUMPING SYSTEMS
- OIL/WATER SEPARATORS
- BELOW GROUND STORAGE TANKS
- GREASE & SILT TRAPS

CARE & MAINTENANCE

Kingspan Environmental Services Who better to look after your treatment plant than the people who designed and built it?

Kingspan Environmental have a dedicated service division providing maintenance for wastewater products.

Factory trained engineers are available for site visits as part of a planned maintenance contract or on a one-off call out basis.

To find out more about protecting your investment and ensuring peace of mind, call us on:

0844 846 0500

or visit us online: www.kingspanenvservice.com

- BELOW GROUND RAINWATER HARVESTING SYSTEMS
- ABOVE GROUND RAINWATER HARVESTING SYSTEMS

Klargester

UK: College Road North, Aston Clinton, Aylesbury, Buckinghamshire HP22 5EW Tel: +44 (0) 1296 633000 Fax: +44 (0) 1296 633001 Scottish Office: Tel: +44 (0) 1355 248484 email: klargester@kingspan.com

Ireland: Unit 1a, Derryboy Road, Carnbane Business Park, Newry, Co. Down BT35 6QH NI Tel : +44 (0) 28 302 66799 Fax: +44 (0) 28 302 60046 ROI Tel: 048 302 66799 Fax: 048 302 60046 email: klargesterinfo@kingspan.com

Environmental

Part of

Certificate No. FM 575486

Certificate No. OHS 575489

In keeping with Company policy of continuing research and development and in order to offer our clients the most advanced products, Kingspan Environmental reserves the right to alter specifications and drawings without prior notice.

RAINWATER SOLUTIONS

Appendix C

Storm Calculations

SCEIRDE ROCKS:					Date:						
					16/07/2024						
					Designed by:		Checked by: SH		Approved By:		
Report Details:					SM MWP:		51		IB		
Type: Junctions											DDN
Storm Phase: Phase											DRN
				Cover		Invert	Sump Depth	Chamber			
Name	Junction Type	Easting (m)	Northing (m)	Elevation (m)	Depth (m)	Elevation (m)	(m)	Shape	Diameter (m)	Lock	
2	Manhole	502312.024	653101.370	21.438	1.253	20.186		Circular	1.200	Elevations	
11	Manhole	502365.154	653128.356	21.456	1.006	20.450	0.000	Circular	1.200	Elevations	
1	Manhole	502364.864	653101.594	21.451	1.001	20.450	0.000	Circular	1.200	Elevations	
32	Manhole	502336.292	653168.277	21.439	1.357	20.082		Circular		Elevations	
33	Manhole	502361.796	653168.039	21.433	1.479	19.954		Circular		Elevations	
3	Manhole	502312.161	653128.487	21.481	1.431	20.050		Circular		Elevations	
34	Manhole	502387.317	653167.822	21.427	1.345	20.082		Circular		Elevations	
30	Manhole	502387.469	653144.970	21.421	0.721	20.700		Circular		Elevations	
31	Manhole	502336.135	653145.469	21.418	1.146	20.272		Circular		Elevations	
12	Manhole	502387.901	653110.219	21.365	0.665	20.700		Circular		Elevations	
25	Manhole	502397.835	653110.045	21.364	0.764	20.600		Circular		Elevations	
14	Manhole	502397.821	653129.524	21.364	0.959	20.405		Circular		Elevations	
13	Manhole	502387.740	653129.625	21.361	0.855	20.506		Circular		Elevations	
4	Manhole	502303.161	653138.728	21.350	1.413	19.937		Circular		Elevations	
15	Manhole	502420.268	653132.593	21.350	1.055	20.295		Circular		Elevations	
16	Manhole	502420.525	653159.702	21.350	1.193	20.157		Circular		Elevations	
17	Manhole	502432.157	653159.970	21.350	1.309	20.041		Circular		Elevations	
18	Manhole	502432.254	653201.435	19.806	1.147	18.659		Circular		Elevations	
36	Manhole	502399.949	653202.232	19.798	0.998	18.800		Circular		Elevations	
37	Manhole	502387.571	653204.702	19.773	1.037	18.737		Circular		Elevations	
38	Manhole	502374.807	653204.991	19.771	1.219	18.552		Circular		Elevations	
35	Manhole	502362.042	653205.280	19.768	1.304	18.464		Circular		Elevations	
5	Manhole	502284.110	653225.683	19.564	1.407	18.157		Circular		Elevations	
43 39	Manhole	502378.092	653240.204	19.436	1.054	18.382		Circular		Elevations	
40	Manhole	502362.314 502338.386	653239.111	19.429	1.303	18.126		Circular		Elevations Elevations	
40	Manhole	502338.354	653239.708 653240.145	19.423 19.419	0.907 0.919	18.516 18.500		Circular Circular		Elevations	
42	Manhole	502388.354	653240.145	19.419	0.919	18.500		Circular		Elevations	
6	Manhole Manhole	502277.866	653253.945	19.410	1.786	17.495		Circular		Elevations	
44	Manhole	502378.365	653264.738	19.186	1.086	18.100		Circular		Elevations	
44 41	Manhole	502378.365	653270.485	19.100	1.000	17.855		Circular		Elevations	
47	Manhole	502302.345	653270.469	19.240	1.185			Circular		Elevations	
20	Manhole	502368.273	653271.979	19.257	1.803	17.455		Circular		Elevations	
46	Manhole	502300.273	653264.694	19.237	0.862			Circular		Elevations	
48	Manhole	502297.485	653270.048	19.290	2.290			Circular		Elevations	
7	Manhole	502274.196	653270.531	19.115	1.882			Circular		Elevations	
19	Manhole	502432.964	653271.916	19.202	1.424	17.778		Circular		Elevations	
8	Manhole	502272.764	653279.148	19.029	2.429			Circular		Elevations	
22	Manhole	502310.612	653285.497	17.890	1.425	16.465		Circular		Elevations	
23	Manhole	502299.067	653285.416		1.949			Circular		Elevations	
50	Manhole	502275.924	653287.411	17.386	1.632	15.754		Circular		Elevations	
49	Manhole	502296.920	653286.994	17.300	1.546			Circular		Elevations	
9	Manhole	502271.090	653289.465	17.000	0.900			Circular		Elevations	
-			200200.100	11.000	0.000	10.100	0.000				

SCEIRDE ROCKS:					Date:						
					16/07/2024						
					Designed by:		Checked by:		Approved By:		
					SM		SH		IB		
Report Details:					MWP:						
Type: Junctions Storm Phase: Phase											DRN
10	Simple Junction	502270.166	653303.245								
24	Simple Junction	502299.543	653300.443								
51	Simple Junction	502275.693	653303.075								
21	Manhole	502310.949	653272.133	19.261	2.469	16.792	0.000	0 Circular	1.200	Elevations	
1											
Inlets											
Junction			et Name		Incoming It	tem(s)		Bypass De	estination		Capacity Type
2		Inlet		1.000	0		(None)			No Restriction	on
11		Inlet			hment Area (5)		(None)			No Restriction	ion
1		Inlet			hment Area (4)		(None)			No Restriction	
32		Inlet		5.001	1		(None)			No Restriction	
32		Inlet (1)			hment Area		(None)			No Restriction	ion
33		Inlet		5.002	2		(None)	/		No Restriction	
33		Inlet (1)		6.000			(None)			No Restriction	ion
		Inlet		1.001			(None)			No Restriction	ion
3		Inlet (1)		2.000	0		(None)			No Restriction	ion
34		Inlet			hment Area (1)		(None)			No Restriction	
30		Inlet		Catch	hment Area (3)		(None)			No Restriction	ion
31		Inlet		5.000	0		(None)			No Restriction	
		Inlet (1)			hment Area (2)		(None)			No Restriction	
12		Inlet			hment Area (6)		(None)			No Restriction	
25		Inlet			hment Area (7)		(None)			No Restriction	
14		Inlet		3.001			(None)			No Restriction	
		Inlet (1)		4.000			(None)			No Restriction	ion
13		Inlet		3.000			(None)			No Restriction	
4 15	,	Inlet		1.002			(None)			No Restriction	
15		Inlet		3.002			(None)			No Restriction	
16		Inlet		3.003			(None)			No Restriction	
17		Inlet		3.004			(None)			No Restriction	on
18		Inlet		3.005			(None)			No Restriction	
36		Inlet			hment Area (11)		(None)			No Restriction	ion
37		Inlet		7.000			(None)			No Restriction	
		Inlet (1)			hment Area (12)		(None)			No Restriction	
38		Inlet		7.001			(None)			No Restriction	
35		Inlet		5.003			(None)			No Restriction	
		Inlet (1)		7.002			(None)			No Restriction	
5		Inlet		1.003			(None)			No Restriction	
43		Inlet		9.000			(None)			No Restriction	
43		Inlet (1)			hment Area (8)		(None)			No Restriction	
39		Inlet		5.004			(None)			No Restriction	
39	,	Inlet (1)		8.000	ر		(None)	/		No Restriction	ion
4											

SCEIRDE ROCKS:			Date:			
			16/07/2024			
			Designed by:	Checked by:	Approved By:	
			SM	SH	IB	
Report Details:			MWP:			
Type: Junctions						DRN
Storm Phase: Phase						
Junction	Inlet Name		Incoming Item(s)			Capacity Type
40	Inlet		ment Area (13)	(None)	No Restrictio	
42	Inlet		ment Area (10)	(None)	No Restrictio	
45	Inlet		ment Area (9)	(None)	No Restrictio	
6	Inlet	1.004		(None)	No Restrictio	n
44	Inlet	9.001		(None)	No Restrictio	n
44	Inlet (1)	10.00		(None)	No Restrictio	n
11	Inlet	5.005		(None)	No Restrictio	n
41	Inlet (1)	9.003		(None)	No Restrictio	n
47	Inlet	9.002		(None)	No Restrictio	n
20	Inlet	3.007		(None)	No Restrictio	
46	Inlet	10.00		(None)	No Restrictio	
48	Inlet	5.006		(None)	No Restrictio	
7	Inlet (1)	1.006		(None)	No Restrictio	
19	Inlet	3.006		(None)	No Restrictio	
8	Inlet	1.007		(None)	No Restrictio	
22	Inlet	3.009		(None)	No Restrictio	
23	Inlet (1)	3.011		(None)	No Restrictio	
50	Inlet (1)	5.009		(None)	No Restrictio	
49	Inlet	5.007		(None)	No Restrictio	
9	Inlet	1.008		(None)	No Restrictio	
10	Inlet	1.009		(None)	No Restrictio	
24	Inlet	3.012		(None)	No Restrictio	
51	Inlet	5.010		(None)	No Restrictio	
21	Inlet	3.008		(None)	No Restrictio	
21	Inter	3.000		(NONE)	NO RESUICIO	11
Outlets						
Junction		Outlet Name		Outgoing Connect	ion Out	let Type
2	Outlet	Outlet Name	1.001	Outgoing Connect	Free Discharge	
 11	Outlet		2.000		Free Discharge	
1	Outlet		1.000		Free Discharge	
32	Outlet		5.002		Free Discharge	
33	Outlet		5.003		Free Discharge	
3	Outlet		1.002		Free Discharge	
34	Outlet		6.000		Free Discharge	
30	Outlet		5.000		Free Discharge	
31	Outlet		5.001		Free Discharge	
12	Outlet		3.000		Free Discharge	
25	Outlet		4.000		Free Discharge	
14	Outlet		3.002		Free Discharge	
13	Outlet		3.001		Free Discharge	
4	Outlet		1.003		Free Discharge	
15	Outlet		3.003		Free Discharge	
16	Outlet		3.004		Free Discharge	
17	Outlet		3.005		Free Discharge	
18	Outlet		3.006		Free Discharge	
		C	Created in InfoDrainage 20	25.2		3/23

SCEIRDE ROCKS:		Date: 16/07/202	24			
		Designed by		Checked by:	Approved By:	
		SM		SH	IB	
Report Details:		MWP:		511		
Type: Junctions						DDN
Storm Phase: Phase						DRN
Junction	Outlet N	Name		Outgoing Connection		Outlet Type
36	Outlet		7.000		Free Discharge	
37	Outlet		7.001		Free Discharge	
38	Outlet		7.002		Free Discharge	
35	Outlet		5.004		Free Discharge	
5	Outlet		1.004		Free Discharge	
43	Outlet		9.001		Free Discharge	
39	Outlet		5.005		Free Discharge	
40	Outlet		8.000		Free Discharge	
42	Outlet		9.000		Free Discharge	
45	Outlet		10.000		Free Discharge	
6	Outlet		1.005		Free Discharge	
44	Outlet		9.002		Free Discharge	
41	Outlet		5.006		Free Discharge	
47	Outlet		9.003		Free Discharge	
20	Outlet		3.008		Free Discharge	
46	Outlet		10.001		Free Discharge	
48	Outlet		5.007		Free Discharge	
	Outlet		1.007		Hydro-Brake®	
	Invert Elevation (m)		17.533			
	Design Depth (m)		0.800			
	Design Flow (L/s)	Minimize Linetus en	3.0			
	Objective	Minimize Upstream Storage Requireme	I			
	Application	Surface Water Only				
	Sump Available		/			
		V				
	Unit Reference	SHE-0085-3000-08 3000	800-			
7	1 t					
1	0.8					
	E .					
	ي 0.6 پل 0.4					
	50 0.4					
	0.2					
	E L					
	0					
	0 1	2	3			
		Flow (L/s)				
19	Outlet		3.007		Free Discharge	
19 8 22	Outlet		1.008		Free Discharge	
22	Outlet		3.010		Free Discharge	
	Outlet		3.012		Hydro-Brake®	
	1 -					1

SCEIRDE ROCKS:				Approved By: IB	Ι
Type: Junctions		MVVP:			
Storm Phase: Phase					DRN
Junction	Outlet Name		Outgoing Connection	(Dutlet Type
1	Invert Elevation (m)	15.997		-	
	Design Depth (m)	0.800			
	Design Flow (L/s)	3.0			
	Objective Minimiz Storage	nize Upstream Ige Requirements			
	Application Surface	ice Water Only			
	Sump Available	✓			
	Unit Reference SHE-00 3000	-0085-3000-0800-			
23	1 0.8 E 0.6 H 0.4				
	L L				
	0.2				
	0 1	2 3			
	Flow (L				
	Outlet	5.010		Hydro-Brake®	

SCEIRDE ROCKS:		Date 16	ate: 5/07/2024			
		Des	esigned by:	Checked by:	Approved By:	
		SM	Μ		IB	
Report Details:		MW	VP:			
Type: Junctions						DRN
Storm Phase: Phase						DKK
Junction	Outlet Nan	ime	/	Outgoing Connection		Outlet Type
	Invert Elevation (m)		15.768			
	Design Depth (m)		0.800			
	Design Flow (L/s)		6.0			
	Objective	Minimize Ups Storage Requ	stream auirements			
	Application S	Surface Wate	ter Only			
	Sump Available					
	Linit Deference	SHE-0118-60 6000				
50			5 6			
10			F 000		Erec Discharge	
49 9 21	Outlet Outlet		5.008		Free Discharge	
9	Outlet		3.009		Free Discharge Free Discharge	
21	Outlet		5.009		Fiee Discharge	

SCEIRDE ROCKS:	Date: 16/07/2024			
	Designed by:	Checked by:	Approved By:	
	SM	SH	IB	
Report Details:	MWP:			
Type: Stormwater Controls Storm Phase: Phase				DRN
Storm Phase: Phase				DINN
Cellular Storage				Type : Tank
Dimensions				

Exceedance Elevation (m)	18.665		
Depth (m)	2.897		
Base Elevation (m)	15.768		
Freeboard (mm)	0		
Initial Depth (m)	0.000		
Porosity (%)	60		
Average Slope (1:x)	0.00		
Total Volume (m³)	52.097		
Depth (m)	Area (m²)	Volume (m ³)	
0.000	70.00	0.000	
1.200	70.00	50.400	
Inlets	1		
Inlet			
Inlet Type Point Inflow			
Incoming Item(s) 5.008			
Bypass Destination (None)			
Capacity Type No Restriction			
	-		
Outlets			
Outlet			
Outgoing Connection 5.009			
Outlet Type Free Discharge			
Advanced	1		
Perimeter	Circular		
Length (m)	19.464		

SCEIRDE ROCKS:	Date: 16/07/2024			
	Designed by:	Checked by:	Approved By:	
	SM	SH	IB	
Report Details:	MWP:			
Type: Stormwater Controls				DRN
Storm Phase: Phase				DRN
Cellular Storage (1)				Type : Tank
Dimensions				
Exceedance Elevation (m)	17.311			

Exceedance Elevation (m)	17.311	
Depth (m)	1.211	
Base Elevation (m)	16.100	
Freeboard (mm)	0	
Initial Depth (m)	0.000	
Porosity (%)	60	
Average Slope (1:x)	0.00	
Total Volume (m ³)	7.811	
Depth (m)	Area (m²)	Volume (m ³)
0.000	20.00	0.000
0.600	20.00	7.200

Inlets

Inlat	1
Inlet	
Inlet Type	Point Inflow
Incoming Item(s)	3.010
Bypass Destination	(None)
Capacity Type	No Restriction
Outlets	
o unoto	
Outlet	
Outgoing Connection	3.011
Outlet Type	Free Discharge

Advanced		
Perimeter	Circular	
Length (m)	10.000	

SCEIRDE ROCKS:	Date: 16/07/2024			
	Designed by:	Checked by:	Approved By:	
	SM	SH	IB	
Report Details:	MWP:			
Type: Stormwater Controls				DRN
Storm Phase: Phase				DRN
Cellular Storage (2)				Type : Tank
Dimensions				

Exceedance Elevation (m)		19.120		
Depth (m)		1.587		
Base Elevation (m)		17.533		
Freeboard (mm)		0		
Initial Depth (m)		0.000		
Porosity (%)		60		
Average Slope (1:x)		0.00		
Total Volume (m ³)		15.187		
Depth (m)	Area (m²)	Volume (m ³)	
	0.000	30.00	0.000	
	0.800	30.00	14.400	
Inlets		1		
ITTIELS				
Inlet				
Inlet Type	Point Inflow			
Incoming Item(s)	1.005			
Bypass Destination	(None)			
Capacity Type	No Restriction			
Outlets				
Outlet				
Outgoing Connection	1.006			
Outlet Type	Free Discharge			
Advanced		1		
De nive e te n		Qinaadaa		

Advanced		
Perimeter	Circular	
Length (m)	15.000	

SCEIRDE ROCKS:	Date: 16/07/2024						
	Designed by:	Checked by:	Approved By:				
	SM	SH	IB				
Report Details:	MWP:						
Type: Connections				DRN			
Storm Phase: Phase				DRN			

	Name	From	То	Length (m)	Connection Type	Slope (1:x)	Manning's n	Colebrook- White Roughness (mm)	Diameter / Base Width (mm)	Upstream Cover Elevation (m)	Upstream Invert Elevation (m)	Downstream Cover Elevation (m)	Invert
1.000		1	2	52.841		199.999	0.010	,	225	21.451	20.450	21.438	20.186
1.001		2	3	27.117	Pipe	199.391	0.010		225	21.438	20.186	21.481	20.050
2.000		11	3	52.993	Pipe	132.482	0.010		225	21.456	20.450	21.481	20.050
1.002		3	4	13.634	Pipe	120.653	0.010		225	21.481	20.050	21.350	19.937
1.003		4	5	89.018	Pipe	50.000	0.010		225	21.350	19.937	19.564	18.157
1.004		5	6	28.944	Pipe	79.955	0.010		225	19.564	18.157	19.281	17.795
1.007		7	8	8.735	Pipe	41.997	0.010		225	19.115	17.533	19.029	17.325
1.008		8	9	10.452	Pipe	20.904	0.010		225	19.029	16.600	17.000	16.100
1.009		9	10	13.811		200.164	0.010		225	17.000	16.100	16.325	16.031
3.000		12	13	19.407		100.001	0.010		150	21.365	20.700	21.361	20.506
3.001		13	14	10.082		99.820	0.010		150	21.361	20.506	21.364	20.405
4.000		25	14	19.479		99.891	0.010		150	21.364	20.600	21.364	20.405
3.002		14	15	22.655		205.957	0.010		225	21.364	20.405	21.350	20.295
3.003		15	16	27.110		196.450	0.010		225	21.350	20.295	21.350	
3.004		16	17	11.635		100.306	0.010		225	21.350	20.157	21.350	
3.005		17	18	41.465		30.000	0.010		225	21.350	20.041	19.806	
3.006		18	19	70.485		80.000	0.010		225	19.806	18.659	19.202	17.778
3.007		19	20	64.690		199.998	0.010		225	19.202	17.778	19.257	17.455
3.008		20	21	57.325		200.000	0.010		225	19.257	17.455	19.261	17.168
3.009		21	22	13.368		40.833	0.010		225	19.261	16.792	17.890	
3.012		23	24	15.034		296.710	0.010		225	17.946	15.997	16.171	15.946
5.000		30	31	51.336		119.944	0.010		150	21.421	20.700	21.418	20.272
5.001		31	32	22.809		120.046	0.010		150	21.418	20.272	21.439	20.082
5.002		32	33	25.505		200.004	0.010		225	21.439	20.082	21.433	19.954
6.000		34	33	25.522		200.006	0.010		225	21.427	20.082	21.433	19.954
5.003		33	35	37.242		25.000	0.010		225	21.433	19.954	19.768	18.464
7.000		36	37	12.622	Pipe	200.006	0.010		225	19.798	18.800	19.773	18.737
7.001		37	38	12.768		150.212	0.010		225	19.773	18.737	19.771	18.652
7.002		38	35	12.768		145.091	0.010		225	19.771	18.552	19.768	18.464
5.004		35	39	33.832		100.095	0.010		225	19.768	18.464	19.429	18.126
8.000		40	39	23.936		61.375	0.010		225	19.423	18.516	19.429	18.126
5.005		39	41	31.374		115.770	0.010		225	19.429	18.126	19.246	17.855
9.000		42	43	10.262		87.001	0.010		225	19.419	18.500	19.436	18.382
9.001		43	44	24.536		87.006	0.010		225	19.436	18.382	19.186	
10.000		45	46	22.186	Pipe	120.001	0.010		225	19.416	18.500	19.177	18.315
10.001		46	44	32.370		150.557	0.010		225	19.177	18.315	19.186	
9.002		44	47	5.732		86.845	0.010		225	19.186	18.100	19.219	18.034
9.003		47	41	15.997		89.367	0.010		225	19.219	18.034	19.246	
5.006		41	48	64.861		200.000	0.010		225	19.246	17.855	19.290	17.531
5.007		48	49	16.955		30.000	0.010		225	19.290	17.000	17.300	
5.010		50	51	15.666		200.000	0.010		225	17.386	15.768	15.993	15.690
0.010				10.000	· .99	200.000	0.010		220	11.000	10.700	10.000	10.000

1807/1024 Integrate Type: Concent by Status Integrat Type: Conc	SCEIRDE ROCKS:	CEIRDE ROCKS:						Date:						
Image: Contractions Type: Contractions Strome Phase: Phase SM SH IB Image: Contractions Strome Phase: Phase 3.010 22 Contractions Strome Phase: Contractions						16/07/2024								
Name Part Family Lock Min. Core part in a constraint in a constraint														
Type:: Connections Conne Conne Connection	Depart Dataila:							SH		IB				
Istom Phase: Phase Image: Storage (1) 1.023 Pipe 20000 0.010 222 17.800 16.465 17.921 3.011 Storage (1) 23 1.181 Pipe 200.000 0.010 0.66 2225 17.800 16.465 17.921 5.088 49 Gellular 1.243 Pipe 200.000 0.010 225 17.800 15.868 18.665 17.860 15.768 17.380 18.665 17.380 18.665 17.380 18.665 17.380 18.665 17.380 18.665 17.380 19.268 17.380 19.268 17.380 19.268 17.380 19.268 17.380 19.268 17.380 19.268 17.380 19.268 17.380 19.268 17.380 19.268 17.380 19.15 19.268 19.281 17.330 19.15 19.268 19.281 17.330 19.15 19.268 17.330 19.15 19.281 17.330 19.15 19.281 17.330 19.15 19.281 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>MVVP:</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>						MVVP:								
Lono Cellular Storage (1) 1.022 Pipe 200.00 0.010 226 17.890 16.465 17.991 3.011 Cellular Storage (1) 23 1.181 Pipe 200.00 0.010 225 17.879 16.00 17.946 5.008 49 Storage 50 1.063 Pipe 200.000 0.010 225 17.30 15.888 18.665 5.009 Cellular Storage (2) 1.335 Pipe 200.000 0.010 225 19.281 17.795 19.288 1.005 6 Storage (2) 7 1.153 Pipe 200.000 0.66 225 19.281 17.33 19.15 1.006 Cellular Storage (2) 7 1.153 Pipe 200.000 0.66 225 19.281 17.33 19.15 1.001 All 0.000 0.000 (None) (None) (None) 19.281 17.53 19.15 1.001 All 0.000 0.000 (N													RN	
1.000 2.0000 0.010 0.020 <t< th=""><th></th><th></th><th></th><th>1</th><th></th><th></th><th>1</th><th>1</th><th></th><th></th><th></th><th></th><th></th></t<>				1			1	1						
3.011Collular 5.008231.18Pipe200.000.062.0517.8016.10017.945.00849Cellular Conge1.243Pipe200.000.0100.052.0511.86815.68818.68618.68618.68618.68617.38610.0510.0510.0519.2619.2619.2619.2619.2619.2619.2619.2619.2619.2619.2619.2619.2619.2619.2619.2619.2619.1519.2619.1519.2619.2619.1519.2619.1519.26 <th>3.010</th> <th>22</th> <th></th> <th>1.023</th> <th>Pipe</th> <th>200.000</th> <th>0.010</th> <th></th> <th>225</th> <th>17.890</th> <th>16.465</th> <th>17.921</th> <th>16.460</th>	3.010	22		1.023	Pipe	200.000	0.010		225	17.890	16.465	17.921	16.460	
5.008 49 6 cellular Storage 1.243 Pipe 200.00 0.010 225 17.300 15.868 18.665 5.009 Cellular Storage 6 1.033 Pipe 200.00 0.010 225 17.300 17.786 17.736	3.011			1.181	Pipe	200.000		0.6	225	17.879	16.100	17.946	16.094	
5.009 Cellular Storage 5.0 1.0.63 Pipe 200.00 0.06 225 18.665 15.76 17.36 1.005 6 Cellular Storage (2) 7 1.133 Pipe 200.00 0.010 225 19.281 17.795 19.268 1.006 Cellular Storage (2) 7 1.163 Pipe 200.00 0.66 225 19.281 17.735 19.268 1.006 Cellular Storage (2) 7 1.163 Pipe 200.00 0.66 225 19.28 17.53 19.268 1.000 All 0.000 Divert Divert (L's) Piet Culvert Type Culvert Entrance 1.001 All 0.000 0.000 (None) (None) None) 1.002 All 0.000 0.000 (None) (None) None) 1.002 All 0.000 0.000 (None) (None) None) 1.003 All 0.000 0.0000 (None) (None)	5.008		Cellular				0.010						15.862	
Storage 50 1.005 Pipe 200.00 0.05 2.25 16.065 15.766 17.360 1.005 6 Storage (2) 1.335 Pipe 200.00 0.010 225 19.281 17.795 19.268 1.006 Cellular Storage (2) 7 1.153 Pipe 200.00 0.6 225 19.281 17.795 19.268 1.006 Cellular Storage (2) 7 1.153 Pipe 200.00 0.6 225 19.26 17.533 19.115 1.000 All 0.000 Downstream Invert Pice Culvert Type Culvert Type Culvert Type Culvert Type Culvert Type 10.00 10.00 10.00 0.000	5.000		Storage	1.2.10	1 ipo	200.000	0.010		220	11.000	10.000	10.000	10.002	
1.006 Storage (2) 1.335 Pipe 200.000 0.010 223 19.281 17.793 19.208 1.006 Cellular Storage (2) 7 1.153 Pipe 200.000 0.6 225 19.26 17.533 19.115 Name Part Family Lock Min. Cover Depth (m) Downstream Invert Elevation (m) Restriction (L/s) Culvert Type Culvert Entrance 1.000 All 0.000 0.000 (None) (None) 1.001 All 0.000 0.000 (None) (None) 1.002 All 0.000 0.000 (None) (None) 1.003 All 0.000 0.000 (None) (None) 1.004 All 0.000 0.000 (None) (None) 1.004 All 0.000 0.000 (None) (None) 1.005 All 0.000 0.000 (None) (None) 1.004 All 0.000 0.000 (None) (None) <				1.063	Pipe	200.000		0.6	225	18.665	15.768	17.386	15.763	
Storage (2) / 1.103 Pipe 2000 0.03 223 19.120 1.533 19.113 Name Part Family Lock Min. Cover Depti (m) Min. Downstream Invert Elevation (L/s) Follow Velocity (m/s) Culvert Type Culvert Entrance 1.000 All 0.000 0.000 (None) (None) None) 2.000 All 0.000 0.000 (None) (None) (None) 1.001 All 0.000 0.000 (None) (None) (None) 2.000 All 0.000 0.000 (None) (None) (None) 1.002 All 0.000 0.000 (None) (None) (None) 1.003 All 0.000 0.000 (None) (None) (None) 1.004 All 0.000 0.000 (None) (None) (None) 3.001 All 0.000 0.000 (None) (None) (None) 3.003 <td< td=""><td></td><td></td><td></td><td>1.335</td><td>Pipe</td><td>200.000</td><td>0.010</td><td></td><td>225</td><td>19.281</td><td>17.795</td><td>19.268</td><td>17.788</td></td<>				1.335	Pipe	200.000	0.010		225	19.281	17.795	19.268	17.788	
Name Part Family Lock Min. Cover Depth (m) Downstream Levation (m) Price Restriction (L/s) Culvert Typ Culvert Etrance 1.000 All 0.000 0.000 (None) (None) 1.001 All 0.000 0.000 (None) (None) 1.002 All 0.000 0.000 (None) (None) 1.002 All 0.000 0.000 (None) (None) 1.003 All 0.000 0.000 (None) (None) 1.004 All 0.000 0.000 (None) (None) 1.004 All 0.000 3.3 (None) (None) 1.008 All 0.000 0.000 (None) (None) 1.008 All 0.000 0.000 (None) (None) 3.001 All 0.000 0.000 (None) (None) 3.003 All 0.000 0.000 (None) (None) 3.004 A	1.006		7	1.153	Pipe	200.000		0.6	225	19.126	17.533	19.115	17.527	
1.001 Ali 0.000 (None) (None) 2.000 Ali 0.000 (None) (None) 1.002 Ali 0.000 0.000 (None) 1.003 Ali 0.000 0.000 (None) 1.004 Ali 0.000 0.000 (None) 1.007 Ali 0.000 0.000 (None) 1.008 Ali 0.000 0.000 (None) 1.009 Ali 0.000 0.000 (None) 3.001 Ali 0.000 0.000 (None) 3.001 Ali 0.000 0.000 (None) 3.002 Ali 0.000 0.000 (None) 3.003 Ali 0.000 0.000 (None) 3.002 Ali 0.000 0.000 (None) 3.003 Ali 0.000 0.000 (None) 3.004 Ali 0.000 (None) (None) 3.005 Al		Part Family		Depth (m)	Downstream Invert Elevation (m)	Restriction	Velocity (m/s)		Entrance					
2.000 All 0.000 (None) (None) 1.002 All 0.000 (None) (None) 1.003 All 0.000 0.000 (None) 1.004 All 0.000 0.000 (None) 1.007 All 0.000 0.000 (None) 1.008 All 0.000 0.000 (None) 1.009 All 0.000 0.000 (None) 3.001 All 0.000 0.000 (None) 3.001 All 0.000 0.000 (None) 3.002 All 0.000 0.000 (None) 3.003 All 0.000 0.000 (None) 3.003 All 0.000 0.000 (None) 3.003 All 0.000 0.000 (None) 3.004 All 0.000 (None) (None) 3.005 All 0.000 (None) (None) 3.006 A														
1.002 All 0.000 (None) (None) 1.003 All 0.000 (None) (None) 1.004 All 0.000 0.000 (None) 1.007 All 0.000 0.000 (None) 1.008 All 0.000 0.000 (None) 1.009 All 0.000 0.000 (None) 3.000 All 0.000 0.000 (None) 3.001 All 0.000 0.000 (None) 3.001 All 0.000 0.000 (None) 3.002 All 0.000 0.000 (None) 3.003 All 0.000 0.000 (None) 3.004 All 0.000 0.000 (None) 3.003 All 0.000 0.000 (None) 3.004 All 0.000 (None) (None) 3.005 All 0.000 (None) (None) 3.006 All 0.000 (None) (None) 3.007 All 0.														
1.003 All 0.000 0.000 (None) (None) 1.004 All 0.000 0.000 (None) (None) 1.007 All 0.000 0.000 3.3 (None) (None) 1.008 All 0.000 0.000 (None) (None) 1.009 All 0.000 0.000 (None) (None) 3.000 All 0.000 0.000 (None) (None) 3.001 All 0.000 0.000 (None) (None) 3.002 All 0.000 0.000 (None) (None) 3.003 All 0.000 0.000 (None) (None) 3.004 All 0.000 0.000 (None) (None) 3.005 All 0.000 0.000 (None) (None) 3.006 All 0.000 0.000 (None) (None) 3.009 All 0.000 0.000 (None) (Non														
1.004 Ali 0.000 0.000 3.3 (None) (None) 1.007 Ali 0.000 0.000 3.3 (None) (None) 1.008 Ali 0.000 0.000 (None) (None) 1.009 Ali 0.000 0.000 (None) (None) 3.001 Ali 0.000 0.000 (None) (None) 3.001 Ali 0.000 0.000 (None) (None) 3.002 Ali 0.000 0.000 (None) (None) 3.002 Ali 0.000 0.000 (None) (None) 3.003 Ali 0.000 0.000 (None) (None) 3.004 Ali 0.000 0.000 (None) (None) 3.005 Ali 0.000 0.000 (None) (None) 3.006 Ali 0.000 0.000 (None) (None) 3.008 Ali 0.000 0.000 (None) (None) 3.012 Ali 0.000 0.000 (None) <td></td>														
1.007 All 0.000 0.000 3.3 (None) (None) 1.008 All 0.000 0.000 (None) (None) 1.009 All 0.000 0.000 (None) (None) 3.000 All 0.000 0.000 (None) (None) 3.001 All 0.000 0.000 (None) (None) 4.000 All 0.000 0.000 (None) (None) 3.001 All 0.000 0.000 (None) (None) 3.002 All 0.000 0.000 (None) (None) 3.003 All 0.000 0.000 (None) (None) 3.004 All 0.000 0.000 (None) (None) 3.005 All 0.000 0.000 (None) (None) 3.006 All 0.000 0.000 (None) (None) 3.008 All 0.000 0.000 (None) (Non														
1.008 All 0.000 (None) (None) 1.009 All 0.000 0.000 (None) (None) 3.000 All 0.000 0.000 (None) (None) 3.001 All 0.000 0.000 (None) (None) 4.000 All 0.000 0.000 (None) (None) 3.002 All 0.000 0.000 (None) (None) 3.003 All 0.000 0.000 (None) (None) 3.004 All 0.000 0.000 (None) (None) 3.005 All 0.000 0.000 (None) (None) 3.006 All 0.000 0.000 (None) (None) 3.008 All 0.000 0.000 (None) (None) 3.012 All 0.000 0.000 (None) (None) 3.008 All 0.000 0.000 (None) (None) 3.012														
1.009 Ali 0.000 0.000 (None) (None) 3.000 Ali 0.000 0.000 (None) (None) 3.001 Ali 0.000 0.000 (None) (None) 3.001 Ali 0.000 0.000 (None) (None) 3.002 Ali 0.000 0.000 (None) (None) 3.003 Ali 0.000 0.000 (None) (None) 3.004 Ali 0.000 0.000 (None) (None) 3.005 Ali 0.000 0.000 (None) (None) 3.006 Ali 0.000 0.000 (None) (None) 3.007 Ali 0.000 0.000 (None) (None) 3.008 Ali 0.000 0.000 (None) (None) 3.012 Ali 0.000 0.000 (None) (None) 5.001 Ali 0.000 0.000 (None) (None)						3.3								
3.000 All 0.000 (None) (None) 3.001 All 0.000 0.000 (None) (None) 4.000 All 0.000 0.000 (None) (None) 3.002 All 0.000 0.000 (None) (None) 3.003 All 0.000 0.000 (None) (None) 3.004 All 0.000 0.000 (None) (None) 3.005 All 0.000 0.000 (None) (None) 3.006 All 0.000 0.000 (None) (None) 3.007 All 0.000 0.000 (None) (None) 3.008 All 0.000 0.000 (None) (None) 3.012 All 0.000 0.000 (None) (None) 5.001 All 0.000 0.000 (None) (None) 5.001 All 0.000 0.000 (None) (None) 5.002														
3.001 All 0.000 0.000 (None) (None) 4.000 All 0.000 0.000 (None) (None) 3.002 All 0.000 0.000 (None) (None) 3.003 All 0.000 0.000 (None) (None) 3.004 All 0.000 0.000 (None) (None) 3.005 All 0.000 0.000 (None) (None) 3.006 All 0.000 0.000 (None) (None) 3.007 All 0.000 0.000 (None) (None) 3.008 All 0.000 0.000 (None) (None) 3.012 All 0.000 0.000 (None) (None) 5.001 All 0.000 0.000 (None) (None) 5.014 All 0.000 0.000 (None) (None) 5.002 All 0.000 0.000 (None) (None)														
4.000All0.0000.000(None)(None)3.002All0.0000.000(None)(None)3.003All0.0000.000(None)(None)3.004All0.0000.000(None)(None)3.005All0.0000.000(None)(None)3.006All0.0000.000(None)(None)3.007All0.0000.000(None)(None)3.008All0.0000.000(None)(None)3.012All0.0000.000(None)(None)5.001All0.0000.000(None)(None)5.002All0.0000.000(None)(None)6.000All0.0000.000(None)(None)														
3.002 All 0.000 (None) (None) 3.003 All 0.000 0.000 (None) (None) 3.004 All 0.000 0.000 (None) (None) 3.005 All 0.000 0.000 (None) (None) 3.006 All 0.000 0.000 (None) (None) 3.006 All 0.000 0.000 (None) (None) 3.007 All 0.000 0.000 (None) (None) 3.008 All 0.000 0.000 (None) (None) 3.012 All 0.000 0.000 (None) (None) 5.001 All 0.000 0.000 (None) (None) 5.002 All 0.000 0.000 (None) (None) 6.000 All 0.000 0.000 (None) (None)														
3.003 All 0.000 0.000 (None) (None) 3.004 All 0.000 0.000 (None) (None) 3.005 All 0.000 0.000 (None) (None) 3.006 All 0.000 0.000 (None) (None) 3.006 All 0.000 0.000 (None) (None) 3.007 All 0.000 0.000 (None) (None) 3.008 All 0.000 0.000 (None) (None) 3.012 All 0.000 0.000 (None) (None) 5.001 All 0.000 0.000 (None) (None) 5.002 All 0.000 0.000 (None) (None) 6.000 All 0.000 0.000 (None) (None)														
3.004 All 0.000 0.000 (None) (None) 3.005 All 0.000 0.000 (None) (None) 3.006 All 0.000 0.000 (None) (None) 3.007 All 0.000 0.000 (None) (None) 3.008 All 0.000 0.000 (None) (None) 3.009 All 0.000 0.000 (None) (None) 3.012 All 0.000 0.000 (None) (None) 5.000 All 0.000 0.000 (None) (None) 5.001 All 0.000 0.000 (None) (None) 5.002 All 0.000 0.000 (None) (None) 6.000 All 0.000 0.000 (None) (None)														
3.005 All 0.000 0.000 (None) (None) 3.006 All 0.000 0.000 (None) (None) 3.007 All 0.000 0.000 (None) (None) 3.008 All 0.000 0.000 (None) (None) 3.009 All 0.000 0.000 (None) (None) 3.012 All 0.000 0.000 (None) (None) 5.000 All 0.000 0.000 (None) (None) 5.001 All 0.000 0.000 (None) (None) 5.002 All 0.000 0.000 (None) (None) 6.000 All 0.000 0.000 (None) (None)														
3.006All0.0000.000(None)3.007All0.0000.000(None)3.008All0.0000.000(None)3.009All0.0000.000(None)3.012All0.0000.000(None)5.000All0.0000.000(None)5.001All0.0000.000(None)5.002All0.0000.000(None)6.000All0.0000.000(None)6.000All0.0000.000(None)6.000All0.0000.000(None)														
3.007 All 0.000 0.000 (None) (None) 3.008 All 0.000 0.000 (None) (None) 3.009 All 0.000 0.000 (None) (None) 3.012 All 0.000 0.000 (None) (None) 5.000 All 0.000 0.000 (None) (None) 5.001 All 0.000 0.000 (None) (None) 5.002 All 0.000 0.000 (None) (None) 6.000 All 0.000 0.000 (None) (None)														
3.008 All 0.000 0.000 (None) (None) 3.009 All 0.000 0.000 (None) (None) 3.012 All 0.000 0.000 3.3 (None) (None) 5.000 All 0.000 0.000 (None) (None) 5.001 All 0.000 0.000 (None) (None) 5.002 All 0.000 0.000 (None) (None) 6.000 All 0.000 0.000 (None) (None)														
3.009 All 0.000 0.000 (None) 3.012 All 0.000 0.000 3.3 (None) 5.000 All 0.000 0.000 (None) (None) 5.001 All 0.000 0.000 (None) (None) 5.002 All 0.000 0.000 (None) (None) 6.000 All 0.000 0.000 (None) (None)														
3.012 All 0.000 0.000 3.3 (None) (None) 5.000 All 0.000 0.000 (None) (None) 5.001 All 0.000 0.000 (None) (None) 5.002 All 0.000 0.000 (None) (None) 6.000 All 0.000 0.000 (None) (None)														
5.000 All 0.000 0.000 (None) 5.001 All 0.000 0.000 (None) 5.002 All 0.000 0.000 (None) 6.000 All 0.000 0.000 (None)						3.3								
5.001 All 0.000 0.000 (None) (None) 5.002 All 0.000 0.000 (None) (None) 6.000 All 0.000 0.000 (None) (None)						5.5								
5.002 All 0.000 0.000 (None) (None) 6.000 All 0.000 0.000 (None) (None)														
6.000 All 0.000 0.000 (None) (None)														
7.000 All 0.000 0.000 (None) (None)														
7.001 All 0.000 0.000 (None) (None)														
7.002 All 0.000 0.000 (None) (None)														
5.004 All 0.000 0.000 (None) (None)														

SCEIRDE ROCKS:	SCEIRDE ROCKS:							
				16/07/2024 Designed by:	Checked by	:	Approved By:	
				SM	SH		IB	
Report Details: Type: Connections Storm Phase: Phase				MWP:				DRN
8.000	All	0.000	0.000		(None)	(None)		
5.005	All	0.000	0.000		(None)	(None)		
9.000	All	0.000	0.000		(None)	(None)		
9.001	All	0.000	0.000		(None)	(None)		
10.000	All	0.000	0.000		(None)	(None)		
10.001	All	0.000	0.000		(None)	(None)		
9.002	All	0.000	0.000		(None)	(None)		
9.003	All	0.000	0.000		(None)	(None)		
5.006	All	0.000	0.000		(None)	(None)		
5.007	All	0.000	0.000		(None)	(None)		
5.010	All	0.000	0.000	6.5	(None)	(None)		
3.010	All	0.000	0.000		(None)	(None)		
3.011	All	0.000	0.000		(None)	(None)		
5.008	All	0.000	0.000		(None)	(None)		
5.009	All	0.000	0.000		(None)	(None)		
1.005	All	0.000	0.000		(None)	(None)		
1.006	All	0.000	0.000		(None)	(None)		

	Date: 16/07/2024			
	Designed by:		Approved By:	
	SM	SH	IB	
	MWP:			
Type: Network Design Criteria				DRN
Storm Phase: Phase				DRN
Flow Options				

Peak Flow Calculation	(UK) Modified Rational Method
Min. Time of Entry (mins)	5
Max. Travel Time (mins)	30

Pipe Options		
Lock Slope Options	None	
Design Options	Minimize Excavation	
Design Level	Level Crowns	
Min. Cover Depth (m)	1.20	.200
Min. Slope (1:x)	500.0	0.00
Max. Slope (1:x)	40.0	10.00
Min. Velocity (m/s)	1	1.0
Max. Velocity (m/s)		3.0
Use Flow Restriction		
Reduce Channel Depths		
Manhole Options		
Apply Offset		

SCEIRDE ROCKS:	Date:			
	16/07/2024			
	Designed by:	Checked by:	Approved By:	
	SM	SH	IB	
Report Details:	MWP:			
Type: Stormwater Controls Summary				DRN
Storm Phase: Phase				DKN

Sceirde Rocks: 30 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Avg. Depth

Stormwater Control	Storm Event	Max. US Elevation (m)	Max. DS Elevation (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Total Lost Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Percentage Available (%)	Status
Cellular Storage	Sceirde Rocks: 30 years: +20 %: 120 mins: Winter	16.679	16.679	0.911	0.911	23.3	38.252	0.000	0.000	6.3	66.314	26.576	ОК
Cellular Storage (1)	Sceirde Rocks: 30 years: +20 %: 30 mins: Winter	16.141	16.141	0.041	0.041	2.6	0.492	0.000	0.000	2.2	2.305	93.696	ОК
Cellular Storage (2)	Sceirde Rocks: 30 years: +20 %: 120 mins: Winter	18.112	18.112	0.579	0.579	8.0	10.420	0.000	0.000	3.3	24.582	31.391	ОК

SCEIRDE ROCKS:	Date:			
	16/07/2024			
	Designed by:	Checked by:	Approved By:	
	SM	SH	IB	
Report Details:	MWP:			
Type: Stormwater Controls Summary				DRN
Storm Phase: Phase				DRN

Sceirde Rocks: 100 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Avg. Depth

Stormwater Control	Storm Event	Max. US Elevation (m)	Max. DS Elevation (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Total Lost Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Percentage Available (%)	Status
Cellular Storage	Sceirde Rocks: 100 years: +20 %: 180 mins: Winter	17.301	17.301	1.533	1.533	23.5	50.615	0.000	0.000	8.0	101.990	2.844	ОК
Cellular Storage (1)	Sceirde Rocks: 100 years: +20 %: 30 mins: Winter	16.154	16.154	0.054	0.054	3.4	0.651	0.000	0.000	2.9	3.065	91.662	ОК
Cellular Storage (2)	Sceirde Rocks: 100 years: +20 %: 120 mins: Winter	18.312	18.312	0.779	0.779	9.8	14.023	0.000	0.000	3.4	31.759	7.666	ОК

SCEIRDE ROCKS:	Date:					
	16/07/2024	6/07/2024				
	Designed by:	Checked by:	Approved By:			
	SM	SH	IB			
Report Details:	MWP:					
Type: Connections Summary				DRN		
Storm Phase: Phase				DRN		

Sceirde Rocks: 30 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Flow

Connection	Storm Event	Connection Type	From	То	Upstream Cover Elevation (m)	Max. US Water Elevation (m)	Max. Flow) Depth (m)	Discharge Volume (m³)	Max. Velocity (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
1.000	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	1	2	21.451	20.527	0.074	4.815	0.9	0.24	9.7	ОК
1.001	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	2	3	21.438	20.256	0.083	4.776	0.6	0.21	8.6	ок
2.000	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	11	3	21.456	20.522	0.084	5.511	0.8	0.22	11.3	ОК
1.002	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	3	4	21.481	20.147	0.083	10.229	1.3	0.34	17.9	ОК
1.003	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	4	5	21.350	20.006	0.070	10.222	1.5	0.2	16.4	ок
1.004	Sceirde Rocks: 30 years: +20 %: 30 mins: Winter	Pipe	5	6	19.564	18.232	0.120	14.402	1.0	0.24	15.7	ОК
1.007	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	7	8	19.115	17.886	0.029	3.285	1.0	0.03	3.0	Surcharge d
1.008	Sceirde Rocks: 30 years: +20 %: 15 mins: Summer	Pipe	8	9	19.029	16.624	0.033	3.185	0.8	0.02	3.0	ОК
1.009	mins: Winter	Pipe	9	10	17.000	16.142	0.042	28.365	0.6	0.07	3.0	ОК
3.000	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	12	13	21.365	20.732	0.031	0.909	0.7	0.1	1.9	ОК
3.001	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	13	14	21.361	20.536	0.037	0.904	0.5	0.09	1.8	OK
4.000	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	25	14	21.364	20.631	0.038	0.910	0.5	0.1	1.9	ОК
3.002	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	14	15	21.364	20.450	0.043	1.804	0.6	0.08	3.3	ОК

SCEIRDE ROCKS: Report Details: Type: Connections Summary					Date: 16/07/2024 Designed by:		ecked by:		oved By:			7
					SM MWP:	SH		IB			D	RN
3.003	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	15	16	21.350	20.337	0.038	1.790	0.6	0.07	2.8	ОК
3.004	Sceirde Rocks: 30 years: +20 %: 30 mins: Winter	Pipe	16	17	21.350	20.192	0.030	2.539	0.9	0.05	2.8	ОК
3.005	Sceirde Rocks: 30 years: +20 %: 30 mins: Winter	Pipe	17	18	21.350	20.066	0.028	2.539	1.0	0.03	2.8	ок
3.006	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	18	19	19.806	18.692	0.038	1.748	0.8	0.05	3.0	ок
3.007	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	19	20	19.202	17.822	0.037	1.672	0.7	0.08	3.1	ОК
3.008	Sceirde Rocks: 30 years: +20 %: 30 mins: Winter	Pipe	20	21	19.257	17.493	0.038	2.464	0.6	0.06	2.6	ОК
3.009	Sceirde Rocks: 30 years: +20 %: 30 mins: Winter	Pipe	21	22	19.261	16.818	0.034	2.458	0.7	0.03	2.6	ОК
3.012	Sceirde Rocks: 30 years: +20 %: 30 mins: Winter	Pipe	23	24	17.946	16.125	0.040	2.253	0.5	0.07	2.3	ОК
5.000	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	30	31	21.421	20.753	0.065	2.359	0.6	0.26	4.8	ОК
5.001	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	31	32	21.418	20.350	0.087	4.717	0.8	0.5	9.0	ок
5.002	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	32	33	21.439	20.178	0.078	7.459	1.1	0.34	14.1	ок
6.000	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	34	33	21.427	20.140	0.060	2.762	0.7	0.14	5.7	ОК
5.003	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	33	35	21.433	20.015	0.086	10.200	1.4	0.16	18.9	ОК
7.000	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	36	37	19.798	18.856	0.065	2.465	0.5	0.13	5.2	ОК
7.001	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	37	38	19.773	18.810	0.071	4.766	0.9	0.2	9.6	ок
7.002	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	38	35	19.771	18.621	0.090	4.763	0.6	0.19	9.4	ОК

SCEIRDE ROCKS: Report Details: Type: Connections Summary						07/2024 gned by:	Ch Sł	hecked by: H	App IB	proved By:		F	
Report Details: Type: Connections Storm Phase: Phas					MWP:			<u>.</u>	·			D	RN
5.004	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	35	39		19.768	18.575	0.116	14.916	1.3	0.44	25.9	ОК
8.000	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	40	39		19.423	18.558	0.082	2.662	0.5	0.07	5.6	ок
5.005	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	39	41		19.429	18.247	0.164	17.495	1.0	0.54	29.2	ОК
9.000	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	42	43		19.419	18.553	0.064	3.185	0.7	0.11	6.7	ок
9.001	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	43	44		19.436	18.458	0.089	7.050	1.0	0.23	14.6	ок
10.000	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	45	46		19.416	18.561	0.060	3.753	0.9	0.15	7.9	ок
10.001	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	46	44		19.177	18.375	0.081	3.738	0.6	0.15	7.3	ок
9.002	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	44	47		19.186	18.202	0.095	10.758	1.3	0.33	20.5	ок
9.003	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	47	41		19.219	18.122	0.152	10.755	1.0	0.32	20.1	ок
5.006	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	41	48		19.246	18.088	0.204	28.064	1.2	1.06	43.6	Surcharge d
5.007	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	48	49		19.290	17.110	0.106	28.030	2.4	0.42	44.3	ок
5.010	Sceirde Rocks: 30 years: +20 %: 120 mins: Winter	Pipe	50	51		17.386	16.678	0.060	66.165	0.7	0.15	6.2	Surcharge d
3.010	Sceirde Rocks: 30 years: +20 %: 30 mins: Winter	Pipe	22	Cellular Storage ((1)	17.890	16.508	0.040	2.444	0.5	0.06	2.6	ок
3.011	Sceirde Rocks: 30 years: +20 %: 30 mins: Winter	Pipe	Cellular Storage (1)	23		17.879	16.141	0.039	2.305	0.5	0.06	2.2	ок
5.008	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	49	Cellular Storage		17.300	16.275	0.225	27.408	1.1	1.05	43.4	Surcharge d
5.009	Sceirde Rocks: 30 years: +20 %: 15 mins: Winter	Pipe	Cellular Storage	50		18.665	16.275	0.225	7.308	0.2	0.19	7.0	Surcharge d

SCEIRDE ROCKS:					Date 16/0	te: /07/2024								
						signed by:		Checke	ed by:		pproved By:			
Report Details: Type: Connections Storm Phase: Phas					SM MWF		I	SH			<u>, </u>		D	RN
1.005	Sceirde Rocks: 30 years: +20 %: 30 mins: Winter	Pipe	6	Cellular Storage (2		19.281	18.003		0.211	13.961	0.9	0.38	15.6	ОК
1.006	Sceirde Rocks: 30 years: +20 %: 30 mins: Winter	Pipe	Cellular Storage (2)	7		19.126	18.002		0.225	8.362	0.6	0.13	4.8	Surcharge d

SCEIRDE ROCKS:	Date:				
	16/07/2024				
	Designed by:	Checked by:	Approved By:		
	SM	SH	IB		
Report Details:	MWP:				
Type: Connections Summary				DRN	
Storm Phase: Phase				DRN	

Sceirde Rocks: 100 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Flow

Connection	Storm Event	Connection Type	From	То	Upstream Cover Elevation (m)	Max. US Water Elevation (m)	Max. Flow) Depth (m)	Discharge Volume (m³)	Max. Velocity (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
1.000	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	1	2	21.451	20.539	0.085	6.208	0.9	0.3	12.6	ОК
1.001	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	2	3	21.438	20.266	0.097	6.165	0.7	0.27	11.3	ок
2.000	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	11	3	21.456	20.533	0.098	7.101	0.9	0.29	14.6	ОК
1.002	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	3	4	21.481	20.163	0.096	13.205	1.4	0.44	23.4	ок
1.003	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	4	5	21.350	20.017	0.082	13.199	1.7	0.26	21.7	ОК
1.004	Sceirde Rocks: 100 years: +20 %: 30 mins: Winter	Pipe	5	6	19.564	18.244	0.217	18.702	1.1	0.31	20.4	ок
1.007	Sceirde Rocks: 100 years: +20 %: 600 mins: Summer	Pipe	7	8	19.115	17.975	0.029	49.158	1.0	0.03	3.0	Surcharge d
1.008	Sceirde Rocks: 100 years: +20 %: 120 mins: Summer	Pipe	8	9	19.029	16.624	0.033	28.047	0.8	0.02	3.0	ОК
1.009	Sceirde Rocks: 100 years: +20 %: 180 mins: Winter	Pipe	9	10	17.000	16.142	0.042	36.718	0.6	0.07	3.0	ОК
3.000	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	12	13	21.365	20.737	0.036	1.176	0.8	0.12	2.4	ОК
3.001	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	13	14	21.361	20.541	0.043	1.170	0.5	0.11	2.3	ок
4.000	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	25	14	21.364	20.636	0.043	1.177	0.6	0.12	2.4	ОК
3.002	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	14	15	21.364	20.456	0.050	2.338	0.7	0.11	4.3	ОК

SCEIRDE ROCKS:					Date: 16/07/2024 Designed by:	Che	ecked by:	Арр	roved By:			
Report Details: Type: Connections Storm Phase: Phas					SM MWP:	SH		IB			D	RN
3.003	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	15	16	21.350	20.343	0.044	2.323	0.7	0.09	3.8	ок
3.004	Sceirde Rocks: 100 years: +20 %: 30 mins: Winter	Pipe	16	17	21.350	20.197	0.034	3.306	0.9	0.06	3.6	ОК
3.005	Sceirde Rocks: 100 years: +20 %: 30 mins: Winter	Pipe	17	18	21.350	20.069	0.032	3.306	1.0	0.03	3.6	ок
3.006	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	18	19	19.806	18.695	0.043	2.281	0.9	0.06	3.7	ок
3.007	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	19	20	19.202	17.828	0.045	2.201	0.7	0.1	4.2	ОК
3.008	Sceirde Rocks: 100 years: +20 %: 30 mins: Winter	Pipe	20	21	19.257	17.499	0.044	3.228	0.6	0.08	3.4	ОК
3.009	Sceirde Rocks: 100 years: +20 %: 30 mins: Winter	Pipe	21	22	19.261	16.822	0.040	3.222	0.7	0.04	3.4	ОК
3.012	Sceirde Rocks: 100 years: +20 %: 30 mins: Winter	Pipe	23	24	17.946	16.149	0.044	3.012	0.5	0.08	2.7	ОК
5.000	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	30	31	21.421	20.760	0.077	3.042	0.7	0.34	6.2	ОК
5.001	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	31	32	21.418	20.365	0.102	6.086	0.9	0.64	11.6	ок
5.002	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	32	33	21.439	20.193	0.090	9.627	1.2	0.45	18.4	ок
6.000	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	34	33	21.427	20.149	0.069	3.560	0.7	0.18	7.4	ОК
5.003	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	33	35	21.433	20.024	0.101	13.164	1.4	0.21	24.6	ОК
7.000	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	36	37	19.798	18.864	0.075	3.178	0.6	0.16	6.7	ОК
7.001	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	37	38	19.773	18.822	0.082	6.147	1.0	0.26	12.5	ОК
7.002	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	38	35	19.771	18.633	0.106	6.145	0.7	0.25	12.1	ОК

SCEIRDE ROCKS: Report Details: Type: Connections Summary					Date: 16/07/2 Designed SM		Ch	necked by: H	Appr IB	oved By:			
Report Details: Type: Connections Storm Phase: Pha					MWP:				i			DF	RN
5.004	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	35	39	1	19.768	18.595	0.151	19.207	1.3	0.58	33.8	ОК
8.000	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	40	39	1	19.423	18.563	0.119	3.428	0.5	0.1	7.2	ок
5.005	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	39	41	1	19.429	18.338	0.225	22.578	1.0	0.71	38.6	ок
9.000	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	42	43	1	19.419	18.562	0.075	4.105	0.8	0.14	8.7	ОК
9.001	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	43	44	1	19.436	18.470	0.115	9.083	1.1	0.3	18.8	ОК
10.000	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	45	46	1	19.416	18.570	0.069	4.841	1.0	0.19	10.2	ок
10.001	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	46	44	1	19.177	18.383	0.113	4.828	0.6	0.2	9.5	ок
9.002	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	44	47	1	19.186	18.281	0.210	13.876	1.4	0.42	26.6	ок
9.003	Sceirde Rocks: 100 years: +20 %: 15 mins: Summer	Pipe	47	41	1	19.219	18.221	0.225	12.383	1.0	0.4	24.6	ок
5.006	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	41	48	1	19.246	18.250	0.225	36.289	1.3	1.25	51.7	Surcharge d
5.007	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	48	49	1	19.290	17.122	0.116	36.254	2.5	0.49	52.0	ок
5.010	Sceirde Rocks: 100 years: +20 %: 60 mins: Winter	Pipe	50	51	1	17.386	16.933	0.062	37.005	0.7	0.16	6.5	Surcharge d
3.010	Sceirde Rocks: 100 years: +20 %: 30 mins: Winter	Pipe	22	Cellular Storage ((1) 1	17.890	16.515	0.047	3.208	0.6	0.08	3.4	ок
3.011	Sceirde Rocks: 100 years: +20 %: 30 mins: Winter	Pipe	Cellular Storage (1)	23	1	17.879	16.154	0.055	3.065	0.5	0.08	2.9	ок
5.008	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	49	Cellular Storage	1	17.300	16.459	0.225	35.413	1.3	1.23	50.9	Surcharge d
5.009	Sceirde Rocks: 100 years: +20 %: 180 mins: Winter	Pipe	Cellular Storage	50	1	18.665	17.301	0.225	101.990	0.2	0.22	8.0	Surcharge d

SCEIRDE ROCKS:	Report Details: Type: Connections Summary				Date: 16/07)7/2024								
					-	gned by:		Checke	əd by:		Approved By:			
Report Details: Type: Connections Storm Phase: Phas					SM MWP:	:	E	SH		II	IB		D	RN
1.005	Sceirde Rocks: 100 years: +20 %: 30 mins: Winter	Pipe	6	Cellular Storage (2	(2)	19.281	18.192		0.225	17.490	1.0	0.49	20.4	Surcharge d
1.006	Sceirde Rocks: 100 years: +20 %: 15 mins: Winter	Pipe	Cellular Storage (2)	7		19.126	18.003		0.225	4.196	0.7	0.19	6.8	Surcharge d

Appendix D Foul Calculations

alachy	Walsh	& Pa	rtner	S								Pa	ıge	T
ahon T	echnol	ogy P	ark											
lackro	ck													
ork												N	licr	
ate 28	/06/20	24 10	:42		De	esigne	ed by	smor	arty					
ile 24	204 WI	NDES 1	REV91	0SM.MI	DX Cł	necked	d by						Idll	nag
P Solu	tions				Ne	etwor}	k 2020	1.3						
				Ē	FOUL SI	EWERA	GE DES	SIGN						
			<u>D</u>	esign	Crite	eria f	<u>for Fo</u>	ul -	<u>Main</u>					
			Pipe	e Sizes	STAND	ARD Mar	nhole S	Sizes	STANDA	RD				
	Induct		orr (1)	(a/ha)	0.00		اما حا	Flore	/ 01:			(0)	,	h
In	Industı dustrial				0.00				/ Clim Backd		2		(200.	
	ow Per H								Backd					
			-	House			esign I							
	D				0.00		n Vel f			-	-			
	Domestic	: Peak	f.Tom E	actor	6.00	1	Min Slo	pe io	r Upti	misat	10n (1	:X)	500	J
				De	signed	with L	evel S	offits						
					2									
			Net		Design				- Ma	in				
PN	-		Slope	work I Area		Table	e for ase	Foul k	HYD	DIA	Sectio	on Tyr		Auto
	(m)	(m)	Slope (1:X)	work I Area (ha)	Design Houses	Table Ba Flow	e for ase (1/s)	Foul k (mm)	HYD SECT	DIA (mm)			De	
F1.000	(m) 2.267	(m) 0.038	Slope (1:X) 59.7	work <u> </u> Area (ha) 0.000	Design Houses	Table Ba Flow	e for ase (1/s) 0.0	Foul k (mm) 1.500	HYD SECT O	DIA (mm) 150	Pipe/C	ondui	De it	esigr 💣
F1.000	(m)	(m) 0.038	Slope (1:X) 59.7	work I Area (ha)	Design Houses	Table Ba Flow	e for ase (1/s) 0.0	Foul k (mm)	HYD SECT O	DIA (mm) 150		ondui	De it	esigr
F1.000 F1.001	(m) 2.267	(m) 0.038 0.270	Slope (1:X) 59.7 60.0	work <u> </u> Area (ha) 0.000	Design Houses	Table Ba Flow	e for ase (1/s) 0.0 0.0	Foul k (mm) 1.500	HYD SECT 0	DIA (mm) 150 150	Pipe/C	ondui ondui	De it it	esigr đ
F1.000 F1.001 F2.000 F2.001	(m) 2.267 16.216 2.663 4.861	(m) 0.038 0.270 0.044 0.081	Slope (1:X) 59.7 60.0 60.5 60.0	work E Area (ha) 0.000 0.000 0.000	Design Houses 0 0 0 0	Table Ba Flow	e for (1/s) 0.0 0.0 0.0 0.0	Foul k (mm) 1.500 1.500 1.500 1.500	HYD SECT O O O O	DIA (mm) 150 150 150 150	Pipe/C Pipe/C Pipe/C Pipe/C	condui condui condui condui	De it it it	esigr of of of
F1.000 F1.001 F2.000 F2.001 F2.002	(m) 2.267 16.216 2.663 4.861 2.353	(m) 0.038 0.270 0.044 0.081 0.039	Slope (1:x) 59.7 60.0 60.5 60.0 60.0	work I Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000	Design Houses 0 0 0 0 0 0 0 0	Table Ba Flow	e for (1/s) 0.0 0.0 0.0 0.0 0.0	Foul k (mm) 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150	Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C	ondui ondui ondui ondui	De it it it it	esigr T
F1.000 F1.001 F2.000 F2.001 F2.002	(m) 2.267 16.216 2.663 4.861	(m) 0.038 0.270 0.044 0.081 0.039	Slope (1:x) 59.7 60.0 60.5 60.0 60.0	work E Area (ha) 0.000 0.000 0.000	Design Houses 0 0 0 0	Table Ba Flow	e for (1/s) 0.0 0.0 0.0 0.0 0.0	Foul k (mm) 1.500 1.500 1.500 1.500	HYD SECT O O O O	DIA (mm) 150 150 150 150 150	Pipe/C Pipe/C Pipe/C Pipe/C	ondui ondui ondui ondui	De it it it it	esigr of of of
F1.000 F1.001 F2.000 F2.001 F2.002 F2.003	(m) 2.267 16.216 2.663 4.861 2.353 12.173	(m) 0.038 0.270 0.044 0.081 0.039	Slope (1:X) 59.7 60.0 60.5 60.0 60.0 60.0 60.3	work I Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000	Design Houses 0 0 0 0 0 0 0 0	Table Ba Flow	e for (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Foul k (mm) 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150	Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C	Condui Condui Condui Condui Condui	De it it it it it	esign of of of of
F1.000 F1.001 F2.000 F2.001 F2.002 F2.003 F3.000	(m) 2.267 16.216 2.663 4.861 2.353 12.173	(m) 0.038 0.270 0.044 0.081 0.039 0.202 0.037	Slope (1:X) 59.7 60.0 60.5 60.0 60.0 60.3 59.5	work I Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Design Houses 0 0 0 0 0 0 0 0 0 0	Table Ba Flow	e for (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Foul k (mm) 1.500 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150	Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C	Condui Condui Condui Condui Condui Condui	De it it it it it	esigr T T
F1.000 F1.001 F2.000 F2.001 F2.002 F2.003 F3.000	(m) 2.267 16.216 2.663 4.861 2.353 12.173 2.203	(m) 0.038 0.270 0.044 0.081 0.039 0.202 0.037	Slope (1:X) 59.7 60.0 60.5 60.0 60.0 60.3 59.5	work I Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Design Houses 0 0 0 0 0 0 0 0 0 0 0	Table Ba Flow	e for (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Foul k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150	Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C	Condui Condui Condui Condui Condui Condui	De it it it it it	esign of of of of
F1.000 F1.001 F2.000 F2.001 F2.002 F2.003 F3.000	(m) 2.267 16.216 2.663 4.861 2.353 12.173 2.203 7.369	(m) 0.038 0.270 0.044 0.081 0.039 0.202 0.037	Slope (1:X) 59.7 60.0 60.5 60.0 60.3 59.5 60.0	work I Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Design Houses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Table Ba Flow	e for (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Foul k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500 able	HYD SECT 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150	Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C	condui condui condui condui condui condui	De it it it it it	esigr of of of of
F1.000 F1.001 F2.000 F2.001 F2.002 F2.003 F3.000	(m) 2.267 16.216 2.663 4.861 2.353 12.173 2.203 7.369 PN US	(m) 0.038 0.270 0.044 0.081 0.039 0.202 0.037 0.123	Slope (1:X) 59.7 60.0 60.5 60.0 60.3 59.5 60.0 Area	work I Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Design Houses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Table Ba Flow Kesu	e for (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Foul k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500 able	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150 150	Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C	condui condui condui condui condui condui	De it it it it it it	esigr T T T T T T
F1.000 F1.001 F2.000 F2.002 F2.003 F3.000 F3.001	(m) 2.267 16.216 2.663 4.861 2.353 12.173 2.203 7.369 PN US	(m) 0.038 0.270 0.044 0.081 0.039 0.202 0.037 0.123 S/IL Σ (m)	<pre>Slope (1:X) 59.7 60.0 60.5 60.0 60.3 59.5 60.0 Area (ha)</pre>	work I Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Design Houses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Table Ba Flow Kesu	e for (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Foul k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500 able y P.Deg (mm)	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150 150 150	Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C 1 Cass) (1,	condui condui condui condui condui condui condui	De it it it it it it it Flow	esigr T T T T T T
F1.000 F1.001 F2.000 F2.002 F2.003 F3.000 F3.001	(m) 2.267 16.216 2.663 4.861 2.353 12.173 2.203 7.369 PN US	(m) 0.038 0.270 0.044 0.081 0.039 0.202 0.037 0.123 s/IL Σ (m)	Slope (1:X) 59.7 60.0 60.5 60.0 60.3 59.5 60.0 Area	work I Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Houses Houses 0 0 0 0 0 0 0 0 0 0 0 0 0	Table Ba Flow Resu	e for (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Foul k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500 2.500 1	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150 150 1 Ve) (m/ 0 1.	Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C 1 Ca s) (1, 14 20	condui condui condui condui condui condui	De it it it it it it	esigr T T T T T
F1.000 F1.001 F2.000 F2.002 F2.003 F3.000 F3.001 F3.001	(m) 2.267 16.216 2.663 4.861 2.353 12.173 2.203 7.369 PN US .000 20 .001 20	(m) 0.038 0.270 0.044 0.039 0.202 0.037 0.123 S/IL E (m) .550 .512	<pre>Slope (1:X) 59.7 60.0 60.5 60.0 60.3 59.5 60.0 Area (ha) 0.000 0.000</pre>	work I Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Design Houses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Table Ba Flow Hse Ac	e for (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Foul k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500 2.500 1	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150 150 1 Ve) (m/ 0 1. 0 1.	Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C 1 Ca s) (1, 14 20 13 20	condui condui condui condui condui condui condui condui condui	De it it it it it it it it it it it it it	esigr T T T T
F1.000 F1.001 F2.000 F2.002 F2.003 F3.000 F3.001 F3.001 F1 F1 F1	(m) 2.267 16.216 2.663 4.861 2.353 12.173 2.203 7.369 PN US .000 20 .001 20 2.000 20	(m) 0.038 0.270 0.044 0.081 0.039 0.202 0.037 0.123 S/IL E (m) .550 .512 .650	<pre>\$10pe (1:X) 59.7 60.0 60.5 60.0 60.3 59.5 60.0 Area (ha) 0.000 0.000</pre>	work I Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Design Houses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Table Ba Flow Hse Ac	e for (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Foul k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500 2.500 1	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150 1 Ve) (m/ 0 1. 0 1.	Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C 1 Ca s) (1, 14 20 13 20	condui co	De it it it it it it it it it it it it it	esign of of of of of
F1.000 F1.001 F2.000 F2.002 F2.003 F3.000 F3.001 F3.001 F1 F1 F1 F1 F1 F2 F2 F2	(m) 2.267 16.216 2.663 4.861 2.353 12.173 2.203 7.369 PN US .000 20 .001 20	(m) 0.038 0.270 0.044 0.039 0.202 0.037 0.123 S/IL E (m) .550 .512 .650 .606	<pre>Slope (1:X) 59.7 60.0 60.5 60.0 60.3 59.5 60.0 Area (ha) 0.000 0.000</pre>	work I Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Design Houses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Table Ba Flow Hse Ac	e for (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Foul k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500 2.500 1	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150 150 1 Ve) (m/ 0 1. 0 1. 0 1.	Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C Pipe/C 1 Ca s) (1, 14 20 13 20 13 19	condui condui condui condui condui condui condui condui condui	De it it it it it it it it it it it it it	esign of of of of of

©1982-2020 Innovyze

0.000.000.001.1420.10.00.000.000.001.1320.00.0

F3.00020.6000.000F3.00120.5630.000

Malachy Walsh & Partners		Page 2
Mahon Technology Park		
Blackrock		- Contraction (1997)
Cork		Micro
Date 28/06/2024 10:42	Designed by smoriarty	Desinado
File 24204 WINDES REV910SM.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	1

	Manhole	Schedules	for	Foul	-	Main	
--	---------	-----------	-----	------	---	------	--

MH Name	MH CL (m)	MH Depth (m)	MH Connect	ion Di	MH .am.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)	
F1	21.439	0.889	Open Man	hole	1200	F1.000	20.550	150					
F2	21.418	0.906	Open Man	hole	1200	F1.001	20.512	150	F1.000	20.512	150		
F	21.173	0.931	Open Man	hole	0		OUTFALL		F1.001	20.242	150		
F3	21.439	0.789	Open Man	hole	1200	F2.000	20.650	150					
F4	21.440	0.834	Open Man	hole	1200	F2.001	20.606	150	F2.000	20.606	150		
F5	21.440	0.915	Open Man	hole	1200	F2.002	20.525	150	F2.001	20.525	150		
F6	21.419	0.933	Open Man	hole	1200	F2.003	20.486	150	F2.002	20.486	150		
F	21.350	1.066	Open Man	hole	0		OUTFALL		F2.003	20.284	150		
F7	21.373	0.773	Open Man	hole	1200	F3.000	20.600	150					
F8	21.373	0.810	Open Man	hole	1200	F3.001	20.563	150	F3.000	20.563	150		
F	21.350	0.910	Open Man	hole	0		OUTFALL		F3.001	20.440	150		

MH Manhole Manhole Intersection Intersection Manhole Layout Name Easting Northing Easting Northing Access (North (m) (m) (m) (m)												
F1 502336.956 653155.780 502336.956 653155.780 Required												
F2 502334.690 653155.736 502334.690 653155.736 Required	-											
F 502334.704 653171.952 No Entry												
F3 502315.901 653115.087 502315.901 653115.087 Required												
F4 502315.919 653117.749 502315.919 653117.749 Required												
F5 502315.919 653122.610 502315.919 653122.610 Required												
F6 502313.567 653122.657 502313.567 653122.657 Required	_											
F 502313.279 653134.827 No Entry												
F7 502389.267 653129.171 502389.267 653129.171 Required	_											
©1982-2020 Innovyze												

Mahon Technol	n & Partne	-				Page 3			
Blackrock									
Cork									
Date 28/06/20	004 10.40		Deciment h			Micro			
			Designed by	y Smortart,	У	Drainage			
File 24204 W	INDES REVS	JUSM.MDX	Checked by	0 1 0		channege			
XP Solutions			Network 202	20.1.3					
	I	Manhole Scl	hedules for	Foul - Ma:	<u>in</u>				
MH Name	Manhole Easting (m)		Intersection] Easting (m)	Intersection Northing (m)	-	out rth)			
F8	502391.470	653129.148	502391.470	653129.148	Required	/			
F	502396.096	653134.885			No Entry				
	<u>Free F</u>	'lowing Out	fall Detail	s for Foul	- Main				
	Outfall	0	. Level I. Le	vel Min					
	Pipe Numb		(m) (m)	-	D,L W . (mm) (mm)				
	F1.0	01 F	21.173 20.1	242 0.000	0 0				
	<u>Free</u> F	'lowing Out	fall Detail	s for Foul	- Main				
	Outfall Pipe Numb		C. Level I. Le (m) (m)	-	D,L W (mm) (mm)				
	F2.0	03 F	21.350 20.3	284 0.000	0 0				
	<u>Free</u> F	<u>lowing Out</u>	fall Detail	s for Foul	- Main				
	Outfall Pipe Numb		C. Level I. Le (m) (m)	-	D,L W (mm) (mm)				
	F3.0	01 F	21.350 20.	440 0.000	0 0				
	S	imulation (Criteria for	r Foul - Ma	ain				
Manhole H	Areal Reduct Hot St Hot Start eadloss Coes	unoff Coeff tion Factor tart (mins) Level (mm) ff (Global) ctare (1/s)	1.000 MZ 0 0 Flow per 0.500	ADD Factor * In Person per	<pre>% of Total Fl 10m³/ha Stora let Coeffiecie Day (1/per/da Run Time (min Interval (min</pre>	age 2.000 ent 0.800 ay) 0.000 as) 60			
	Number of	Online Cont	raphs 0 Number rols 0 Number rols 0 Number	of Time/Are	ea Diagrams O				
		Synthet	ic Rainfall	Details					
		@1.0	82-2020 Innc						

Appendix E

Rainfall Return Period table

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 102484, Northing: 153194,

						Years									
DURATION	6months, lyear,	2,	З,	4,	5,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
5 mins	3.0, 3.7,	4.1,	4.6,	4.9,	5.1,	5.8,	6.6,	7.0,	7.7,	8.2,	8.6,	9.2,	9.6,	10.0,	N/A ,
10 mins	4.2, 5.2,	5.7,	6.4,	6.8,	7.1,	8.1,	9.2,	9.8,	10.7,	11.4,	12.0,	12.8,	13.4,	13.9,	N/A ,
15 mins	5.0, 6.1,	6.7,	7.5,	8.0,	8.4,	9.5,	10.8,	11.5,	12.6,	13.4,	14.1,	15.0,	15.8,	16.3,	N/A ,
30 mins	6.5, 7.9,	8.7,	9.7,	10.3,	10.8,	12.3,	13.9,	14.8,	16.1,	17.2,	18.1,	19.3,	20.2,	20.9,	N/A ,
1 hours	8.4, 10.3,	11.2,	12.5,	13.4,	14.0,	15.9,	17.9,	19.1,	20.7,	22.1,	23.2,	24.7,	25.9,	26.8,	N/A ,
2 hours	11.0, 13.4,	14.6,	16.2,	17.3,	18.1,	20.5,	23.0,	24.6,	26.7,	28.4,	29.7,	31.7,	33.1,	34.3,	N/A ,
3 hours	12.8, 15.6,	17.0,	18.9,	20.1,	21.0,	23.8,	26.7,	28.5,	30.9,	32.9,	34.4,	36.6,	38.3,	39.6,	N/A ,
4 hours	14.3, 17.4,	18.9,	21.0,	22.4,	23.4,	26.5,	29.7,	31.6,	34.3,	36.5,	38.2,	40.6,	42.4,	43.9,	N/A ,
6 hours	16.7, 20.3,	22.0,	24.5,	26.0,	27.2,	30.7,	34.4,	36.7,	39.7,	42.2,	44.1,	47.0,	49.1,	50.8,	N/A ,
9 hours	19.5, 23.6,	25.6,	28.4,	30.2,	31.6,	35.6,	39.9,	42.5,	46.0,	48.9,	51.1,	54.3,	56.7,	58.7,	N/A ,
12 hours	21.7, 26.3,	28.6,	31.7,	33.6,	35.1,	39.6,	44.3,	47.2,	51.0,	54.2,	56.6,	60.2,	62.9,	65.0,	N/A ,
18 hours	25.4, 30.7,	33.2,	36.8,	39.1,	40.8,	46.0,	51.4,	54.7,	59.1,	62.8,	65.5,	69.6,	72.7,	75.1,	N/A ,
24 hours	28.3, 34.2,	37.0,	41.0,	43.5,	45.4,	51.1,	57.0,	60.7,	65.6,	69.6,	72.7,	77.2,	80.5,	83.2,	92.1,
2 days	36.3, 43.3,	46.6,	51.1,	54.0,	56.2,	62.7,	69.3,	73.4,	78.8,	83.3,	86.7,	91.6,	95.3,	98.2,	107.9,
3 days	43.3, 51.1,	54.8,	59.9,	63.1,	65.5,	72.7,	80.0,	84.5,	90.4,	95.3,	98.9,	104.2,	108.2,	111.3,	121.7,
4 days	49.7, 58.3,	62.3,	67.9,	71.4,	74.0,	81.8,	89.7,	94.5,	100.8,	106.1,	110.0,	115.7,	119.9,	123.3,	134.4,
6 days	61.4, 71.4,	76.1,	82.5,	86.5,	89.4,	98.3,	107.3,	112.8,	119.9,	125.8,	130.2,	136.5,	141.2,	145.0,	157.3 ,
8 days	72.2, 83.5,	88.7 ,	95.9,	100.4,	103.7,	113.5,	123.5,	129.5,	137.3,	143.8,	148.6,	155.6,	160.7,	164.8,	178.1,
10 days	82.6, 95.0,	100.8,	108.6,	113.5,	117.1,	127.9,	138.7,	145.2,	153.7,	160.7,	165.9,	173.4,	178.9,	183.3,	197.7,
12 days	92.6, 106.0,	112.3,	120.8,	126.1,	130.0,	141.6,	153.2,	160.2,	169.3,	176.8,	182.3,	190.4,	196.2,	200.9,	216.2,
16 days	111.8, 127.3,	134.5,	144.2,	150.2,	154.6,	167.8,	180.9,	188.7,	199.0,	207.4,	213.6,	222.5,	229.1,	234.3,	251.3,
20 days	130.4, 147.8,	155.8,	166.6,	173.3,	178.2,	192.8,	207.2,	215.9,	227.2,	236.4,	243.2,	253.0,	260.2,	266.0,	284.5,
25 days	153.1, 172.6,	181.6,	193.8,	201.2,	206.7,	222.9,	239.0,	248.6,	261.1,	271.3,	278.8,	289.6,	297.5,	303.8,	324.1,
NOTES:															

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf